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1. Introduction 
 The study of conditional dependence structures in equity markets has re-
cently received considerable attention among both researchers and practitioners. 
It is of great importance, for instance, for controlling risks, optimal portfolio 
choice, or analyzing volatility transmission mechanism. In this context, the is-
sue of particular interest is asymmetry in dependence structures. One of the 
most spectacular examples of asymmetric behavior in equity markets is a well 
documented phenomenon consisting in tendency of much stronger dependence 
between stock returns in crisis times than those of optimistic market times. Tra-
ditional multidimensional volatility models with elliptically distributed standar-
dized innovations cannot reproduce such dependence structures. Moreover, out-
side the world  of elliptical distributions, for example when dealing with condi-
tional  marginals belonging to different distribution families, the standard infe-
rence about dependence using the linear correlations may be quite misleading 
(Embrechts et al., 2002). Much of the limitations encountered with traditional 
approach to modeling conditional dependencies between equity returns can be 
overcome by using the concept of copula. This tool makes possible to construct  
multivariate distributions with arbitrary marginals, isolating the description of 
the dependence structure. Copulas can also be used to investigate tail behavior 
in joint conditional distributions and various kinds of asymmetry. In the condi-
tional dependence modeling a dynamics of time-varying copula has to be speci-
fied. It can be done by means of the techniques introduced by Patton (2004, 
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2006) that involve some process governing the evolution of the copula parame-
ter over time. Among alternative approaches, a combination of copula theory 
with regime switching models is applied (e.g. Rodriguez, 2007; Tsafack, 2006) 
which enables to model the conditional dependence structure with sufficient 
flexibility. 
 In this paper we model the conditional dependence structure for daily re-
turns on the WIG20 index representing largest companies listed on the Warsaw 
Stock Exchange, and the MIDWIG index calculated based on shares values of 
medium-sized companies from  the exchange. Our approach uses a Markov-
switching copula model that allows us to investigate asymmetry in conditional 
dependencies between extremal returns on the indices. The result concerning 
the existence of significant asymmetry in tail dependence that we derive can be 
of importance for risk management. 

2. Copulas and Dependence Measures 
 Copulas were initially introduced by Sklar (1959). Formally, an n-
dimensional copula is a distribution function C on n-cube n]1 ,0[ with standard 
uniform marginal distributions. Let X be an n-dimensional random variable with 
joint distribution function F and 1-dimensional marginal distribution functions 

iF . The importance of copulas in studying of multivariate distribution functions 
is summarized by Sklar’s theorem which states that F can be written as 

))(,),((),,( 111 nnn xFxFCxxF KK =  (1) 

for some copula C. If the marginal distribution functions are continuous then C 
is unique and is called the copula of F or X. Conversely, if C is a copula and 

nFF ,,1 K  are univariate distribution functions, then the function F defined in 
(1) is a joint distribution function with margins nFF ,,1 K . An explicit represen-
tation of C in terms of F and its margins is given by 

))(,),((),,( 1
1

1
11 nnn uFuFFuuC −−= KK ,    (2)  

where })(  :inf{)(1
iiiiii uxFxuF ≥=− . Since the marginals and the dependence 

structure in (1) can be separated, it makes sense to interpret the copula C as the 
dependence structure of F.  
      If a copula C is absolutely continuous, its density c is, as usual, given by 

n

n
n

n uu
uuCuuc

∂∂
∂

=
K

K
K

1

1
1

),,(),,( .  (3) 

In the empirical part of this paper we will use the Gaussian, and Joe-Clayton 
copulas. They are defined as follows: 

( ))(),(),( 11 vuvuC Gauss −− ΦΦΦ= ρρ  , (4)                                                  
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( ) κγγκγκ
γκ

/1/1
, )1])1(1[])1(1([11),( −−−− −−−+−−−−= vuvuC CJ . (5) 

In (4), ρΦ  denotes the distribution of standard 2-dimensional normal vector 
with the linear correlation coefficient ρ , and Φ  stands for the standard normal 
distribution function. The parameters in the Joe-Clayton copula (5) are assumed 
to satisfy the conditions: 1≥κ , }0{\),1[ ∞−∈γ . For 1=κ , the Joe-Clayton 
copula becomes the Clayton copula. In the limit case 0=γ , the Clayton copula 
approaches the independent copula (Nelsen, 2006). 
 The most popular measure of dependence, the usual Pearson linear correla-
tion, is inappropriate and can be misleading outside the world of elliptical dis-
tributions. In such a situation it is better  to use Spearman’s rank correlation and 
Kendall’s tau (Embrechts et al., 2002), which are copula-based dependence 
measures. If ),( YX  is a random vector and )~,~( YX  is its independent copy then 
Kendall’s tau of ),( YX is defined as 

}0)~)(~{(}0)~)(~{(),( <−−−>−−= YYXXPYYXXPYXτ .  (6) 

It can be expressed in terms of the copula C for a continuous vector ),( YX as 

1),(d),(4),(
2]1 ,0[ 

−= ∫∫ vuCvuCYXτ . (7)                                 

For the Gaussian copula GaussC ρ , Kendall’s tau equals )arcsin(2 ρπ . A direct 

formula for Kendall’s tau for the Joe-Clayton copula CJ
,
−
γκC  is not known to us, 

but we have derived the  formula  

∫ +− −−−+=
1

0

11 ))1(1(421),( dxxx γκκ

κγκγ
γκτ  (8) 

which allows for numerical computation. 
 If X and Y are random variables with distribution functions F and G then the 
coefficient of tail dependence, upper, Uλ , and lower, Lλ are defined as follows 

))(|)((lim 11
1 qFXqGYPqU

−−
→

>>= −λ ,  (9) 

))(|)((lim 11
0 qFXqGYPqL

−−
→

≤≤= +λ ,  (10) 

provided that the limits exist. If they are greater than 0, then the variables are 
said to exhibit upper (lower) tail dependence. The coefficients dependent only 
on the copula of X and Y. For the Gaussian copula it holds 0== LU λλ  (Em-
brechts et al., 2002), meaning asymptotic independence in the tails. In the Joe-
Clayton copula, κλ /122 −=U  and γλ /12−=L  for 0>γ  (Patton, 2006).                                                        
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3. Markov-Switching Copula Models 
 The notion of conditional copula introduced by Patton (2004, 2006) allows 
to apply copulas for modeling the joint distribution tr  conditional on informa-
tion set 1−Ω t , where ),(  ,2 ,1 ttt rrr = is a bivariate vector of financial returns. In 
this paper we consider the following general dynamic conditional copula model 

)(  ~| 1,1 ⋅Ω − ttt Fr ,  )(  ~| 1,2 ⋅Ω − ttt Gr ,  (11) 

)|)(),((~| 11 −− Ω⋅⋅Ω tttttt GFCr ,  (12) 

where the set tΩ  includes the up to time t information on the returns on both 
considered financial assets, and tC  is the conditional copula joining the mar-
ginal conditional distributions. Further, we assume that   

ttt yr += μ ,  )|( 1−Ω= ttt rEμ , (13) 

tititiy ,,, εσ= ,  )|var( 1,
2
, −Ω= ttiti rσ ,  (14) 

),,1 ,0(_  ~, iiti tSkewIID ηξε ,  2
1,

2
1,

2
, −− ++= tiitiiiti y σβαωσ ,  (15) 

where ),,1 ,0(_ ηξtSkew denotes the standardized skewed Student t distribution 
with 2>η  degrees of freedom, and skewness coefficient 0>ξ  (Lambert and 
Laurent, 2002). 
 In a Markov-switching copula model (MSC model) we use for modeling the 
conditional dependence between the financial returns, the joint conditional dis-
tribution has the form )|)(),((~| 11 −− Ω⋅⋅Ω tttStt GFCr

t
,  where tS  is a homoge-

neous Markov chain with state space }2,1{ . The parameters of the applied MSC 
model are the parameters of the univariate models for the marginal distributions 
(GARCH(1,1) with the standardized skewed  Student’s t distributions for the 
innovations), the parameters of the copulas 1C  and 2C , and the transition prob-
abilities 

( )1|1 111 === −tt SSPp ,  ( )2|2 122 === −tt SSPp .  (16) 

The conditional probabilities )|( 1−Ω= tt jSP , 2 ,1=j , are calculated by 
means of Hamilton’s filter: 

∑ = −−− Ω==Ω=
2

1 111 )|()|(
i ttijtt iSPpjSP ,  (17) 

∑ = −−

−−

Ω=Ω=

Ω=Ω=
=Ω= 2

1 11

11

)|(),|(

)|(),|(
)|(

i ttttti

tttttj
tt

iSPiSuc

jSPjSuc
jSP ,  (18) 
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where 11112 1)1|2( pSSPp tt −==== − ,   22121 1)2|1( pSSPp tt −==== − ,  
),( ,2,1 ′= ttt uuu , )( ,1,1 ttt rFu = , )( ,2,2 ttt rGu = , and ),|( 1−Ω=⋅ ttj jSc is the 

density of the conditional copula coupling the conditional marginal distributions 
in regime j. The maximized log-likelihood function was of the form 

( )
( ) ( ) ,  );|(ln);|(ln

);|();,|(ln

1 21,21 11,1

1

2

1 11

∑∑
∑ ∑

= −= −

= = −−

Ω+Ω+

+Ω=Ω==

T

t ttt
T

t ttt

T

t j tttttj

rgrf

jSPjSucL

θθ

θθ
 (19) 

where tf  and tg are the density functions corresponding to tF  and tG , fitted 
using the AR-GARCH models. 

4. The Data and Empirical Results 
 The data we use in this paper consist of daily returns on two Polish stock 
indices, WIG20 and MIDWIG. The indices represent, respectively, the largest 
and medium-sized companies listed on the Warsaw Stock Exchange. The sam-
ple period is from January 9, 2001 to March 16, 2007. The daily return series tr  
is defined as )ln(ln100 1−−= ttt PPr , where tP  is the closing quotation on day t. 
Table 1 presents descriptive statistics for the return series. 

Table 1. Descriptive statistics for the return series (January 9, 2001 – March 16, 2007)  
Index Mean Std. Dev. Minimum Maximum Skewness Kurtosis 
WIG20 0.0412 1.4583 -5.7306 5.4830 0.0412 4.0421 
MIDWIG 0.0966 0.8731 -5.6449 4.1011 -0.56426 6.3457 

 For the MIDWIG index kurtosis is much higher than for the WIG20, and the 
same holds for the absolute value of skewness which is negative in the case of 
the MIDWIG and positive for the WIG20. The return series showed some auto-
correlation and in all cases conditional homoskedasticity was strongly rejected 
by the Engle test.  
 We estimated the MSC model applying a two-stage estimation method. 
Taking into account the obtained values of the information criteria and the re-
sults of performed likelihood ratio tests, we assumed that the dependence struc-
ture in one of the regimes was governed by the Gaussian copula GaussC ρ . We de-
cided to mark this a regime by 1. Regime 2 was chosen to be governed by the 
Joe-Clayton copula CJ

,
−
γκC . For the sake of place, we report only the bivariate es-

timation results. They are presented in Table 2. 
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Table 2. Parameter estimates for the MSC model (standard errors in parentheses) 

 ρ  11p  22p  κ   γ  

WIG20&MIDWIG 
0.7522 
(0.022) 

0.9555 
(0.0361) 

0.9152 
(0.0797) 

1.1997 
(0.1001) 

1.0197 
(0.1872) 

 The obtained estimates of the transition probabilities contain additional in-
formation which is of importance from the practical point of view. Namely, we 
can derive from them the unconditional probabilities )( iSP t =  of being the 
process in regime i, the inverses mtr(i) of which can be interpreted as expected 
times of return of the process to regime i, and the expected duration d(i) of re-
gime i, 2,1=i . The corresponding formulas are as follows (cf. Durrett, 1999): 

iip
id

−
=

1
1)( ,  (20) 

2211

22

2
1

)1(
pp

p
SP t −−

−
== ,  

2211

11

2
1

)2(
pp

p
SP t −−

−
== .  (21) 

Table 3 contains the estimates for these quantities as well as Kendall’s tau coef-
ficients for the estimated copulas. The estimates for upper and lower tail coeffi-
cients for the Joe-Clayton copula together with the standard errors calculated by 
the delta method are presented in Table 4.  

Table 3. Kendall’s tau for the estimated copulas, the unconditional probability of regime 
1, mean times of return to the regimes, and durations for the regimes 

Gaussτ  CJ −τ  P(St = 1) mtr(1) mtr(2) d(1) d(2) 
0.5420 0.3786 0.6558 1.5248 2.9055 22.4624 11.7892 

Table 4.  Estimates for upper and lower tail coefficients (standard errors in parentheses) 

Uλ  Lλ  
0.2179  (0.0859) 0.5067  (0.0632) 

 From the obtained results it follows that regime 1, governed by the Gaussian 
copula, is more stable, and, on average, it lasts about twice as long as the one 
governed by the Joe-Clayton copula. The dependence between the indices re-
turns in regime 1, measured by Kendall’s tau, is almost one and a half as strong 
as in the other regime. Regime 2 is, however, characterized by significant tail 
dependence of asymmetric type. Significantly greater coefficient of lower tails 
dependence means that the dependencies between returns on the WIG20 and 
MIDWIG are much stronger during bear markets than in bull markets. In order 
to compare our results with ones available with more traditional tools, we also 
estimated the conditional dependencies between the return series using Engle’s 
(2002) DCC model with Student’s t errors. Figure 1 shows the dynamics of the 
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conditional Kendall’s tau estimated with this model and with the MSC model. It 
should be noticed that the t-DCC model gives higher estimates. Figure 2 depicts 
the dynamics of the conditional upper and lower tail coefficients estimated by 
means of the MSC model.  

 
Figure 1. The dynamics of the conditional Kendall’s tau coefficients estimated with the 

t-DCC and MSC models 

 
Figure 2. The dynamics of the conditional coefficients of lower and upper tail depend-

ence estimated with the MSC model 

5. Conclusions 
 In this paper, using a Markov-switching copula model, we investigated con-
ditional dependencies between daily returns on two Polish stock indices, 
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WIG20 and MIDWIG, representing the largest and medium-sized companies 
listed on the Warsaw Stock Exchange. We were especially interested in discov-
ering patterns of dependence that cannot be reproduced by traditional multidi-
mensional volatility models with elliptical conditional distributions, including 
asymmetry in tail dependence. To this end, we applied a Markov-switching 
copula model that allowed us to model the dynamics of such copula-based de-
pendence measures between the returns as Kendall’s tau and tail dependence 
coefficients. We identified two regimes in the dependence structure: the first 
more stable, governed by the Gaussian copula, and the second with the expected 
duration about half as much as that of the first one, exhibiting significant 
asymmetry in tail dependence, described by the Joe-Clayton copula. Our find-
ings that the returns on the indices are much stronger dependent during bear 
market than during bull market, and that the conditional dependence measured 
by the Kendall’s tau calculated from the Markov-switching copula model is 
weaker than the one obtained from the Student-t-DCC model can be of impor-
tance for risk management. 
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