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1. Introduction 
 Financial markets research indicated that financial series, such as stock re-
turns, foreign exchange rates and others, exhibit leptokurtosis and volatility 
varying in time. An asymmetric reaction of the volatility to good or bad news 
(changes in returns) is observed. Hence, volatility tends to grow in reaction to 
bad news and fall in response to good news. In finance, this effect is called fi-
nancial leverage. In models such as EGARCH, GJR and TARCH the negative 
correlation between returns and its volatility is taken into consideration 
(Brzeszczyński, Kelm, 2002; Doman, Doman, 2004; Fiszeder, 2001; Fornari, 
Mele, 1997). Fornari and Mele (1997) proposed a different way to take into 
account an asymmetry in comparison to GJR models. In their work, they have 
shown that the proposed models provide better interpretative results than the 
GJR models.  
 In the literature, non-linear dynamics of financial time series has generally 
been described by the class of GARCH models (Bollerslev, 1986; Engle, 1982). 
A different, alternative approach to the description of financial time series 
represents random coefficient autoregressive models (RCA) (Nicholls, Quinn, 
1982). However, the RCA GARCH models with innovations from the normal 
distribution (Thavaneswaran, Appadoo, Samanta, 2005) can be treated as an 
alternative to GARCH models with innovations from the t-distribution (or simi-
lar) (Górka, 2007b). Including a sign function in the RCA model causes a 
change in the parameter value to depend on the sign of the previous observa-
tion. It is the similar in case of the RCA GARCH model. 
                                                      

∗ This work was financed from the Polish science budget resources in the years 
2008-2010 as the research project N N111 434034. 
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 The aim of this paper is to present the selected models with the sign func-
tion. The focus will be on properties of processes generated by selected models, 
especially on their kurtosis and its existence conditions.  

2. Sign RCA Models 
 Random coefficient autoregressive models (RCA) are straightforward gen-
eralization of the constant coefficient autoregressive models. A full description 
of this class of models including their properties, estimation methods and some 
application, can be found in Nicholls and Quinn (1982). 
 The classical random coefficient autoregressive model of first order for 
stationary univariate time series can be written as:  

( ) tttt yy εδα ++= −1 , (1) 

where:  
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122 <+ δσα . (3) 

Condition (3) is necessary and sufficient for the second-order stationarity of ty . 
Conditions (2)-(3) ensure the strict stationarity of the process. The model (1), 
with appropriate assumptions, can take the form of: AR, STUR, RCA(1, p) 
(Górka, 2007a; Lee, 1998).  
 If conditions (2)-(3) are satisfied, the process (1) has the following proper-
ties (Appadoo, Thavaneswaran, Singh, 2006; Aue, 2004): 

( ) 0=tyE , (4) 
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Hence, the process (1) has zero mean, constant unconditional variance and kur-
tosis. The constant unconditional variance of RCA(1) is bigger than the uncon-
ditional variance of AR(1). If 02 =δσ , the value of kurtosis (6) reduces to 3 
(similarly to AR(1) models). The necessary condition for the existence of the 
kurtosis  (6) has the form: 136 4224 <++ δδ σσαα . 
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 A stationary sign RCA models is given by (Thavaneswaran, Appadoo, 
2006):  

( ) ttttt ysy εδα +Φ++= −− 11 , (7) 

where the conditions (2)-(3) are satisfied, and  
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 If Φ>+ tδα , the negative value of Φ  means, that the negative (positive) 
observation values at time 1−t  correspond to a decrease (increase) of observa-
tion values at time t . In the case of stock returns it would suggest (for returns) 
that after a decrease of stock returns the decrease of stock returns occurs higher 
than expected, and in the case of the increase of stock returns the increase in 
stock returns occurs lower than expected. 
 If conditions (2)-(3) are satisfied, the process (7) has the following proper-
ties (Thavaneswaran, Appadoo, 2006): 

( ) 0=tyE , (9) 

( ) 222

2
2

1 Φ−−−
=

δ

ε

σα
σ

tyE , (10) 

( )
( )[ ][ ]42222244

2222

361

13

δδδ

δ

σσασαα

σα

++Φ++Φ+−
⎥⎦
⎤

⎢⎣
⎡ Φ++−

=K . (11) 

Therefore, the process described by equation (7) has zero mean, constant un-
conditional variance and kurtosis. The necessary condition for the existence of 
the kurtosis is ( )[ ] 136 42222244 <++Φ++Φ+ δδδ σσασαα . (12) 

When 02 =δσ  and 0=Φ , the kurtosis of  (11) reverts to 3. 

 From the comparison of properties (4)-(6) of the RCA model with proper-
ties (9)-(11) of  the sign RCA model we can see that introducing the sign func-
tion to the RCA model causes an increase of variance and kurtosis with relation 
to the variance and kurtosis obtained for the process described by the RCA 
model without sign function. 
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3. Sign GARCH Models 
 The general q)GARCH(p,  model is described by the following equations: 

ttty εσ= , (13) 

∑∑
=

−
=

− ++=
p

j
jtj

q

i
itit y

1

2

1

22 σβαωσ , (14) 

where ( )1,0~ iidtε , 0>ω , 0≥iα  and 0≥jβ . 

 Formulas for the theoretical kurtosis for processes generated by given 
GARCH models are presented in the literature (e.g. Doman, Doman, 2004). 
However, there is a lack of a general formula for the kurtosis of processes de-
scribed by the equations (13)-(14). Below the general formula for the kurtosis of 
many GARCH models (i.e. with different assumptions about distributions) will 
be presented. 
 To write the general formula for the kurtosis of the GARCH model, without 
an assumption about the distribution type, the model (13)-(14) should be written 
as ARMA form. If  22

ttt yu σ−=  is the martingale difference with variance
( ) 2var utu σ= , the model (16)-(17) can be interpreted as q)ARMA(m, model for

2
ty  and can be written as: 
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i
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or  ( ) ( ) tt uByB βωφ +=2 , (16) 

where ( ) ( ) ∑∑ == −=+−= m
i

i
i

m
i

i
ii BBB 11 11 φβαφ , ( ) ∑ =−= p

j
j

j BB 11 ββ , 

{ }qpm ,max= , 0=iα  for qi >  and 0=iβ  for pj > . 

 The stationarity assumptions for 2
ty , which has an ARMA(m,q) representa-

tion, are the following (Thavaneswaran, Appadoo, Samanta, 2005): 
(Z.1) All roots of the polynomial ( ) 0=Bφ  lie outside the unit circle. 

(Z.2) ∞<∑∞
=0

2
i iψ ,  where the iψ ’s are coefficients of the polynomial 

( ) ∑∞
=+= 11 i

i
iBB ψψ  satisfying the equation ( ) ( ) ( )BBB βφψ = .  

These assumptions ensure that the tu ’s are uncorrelated, have zero mean and 

finite variance and that the 2
ty  process is weakly stationary.  

 If the GARCH(p,q) model, described by (16), satisfies conditions (Z.1)-
(Z.2) and has finite unconditional moment of fourth order, then the kurtosis K  
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of process 2
ty  specified  by (16) can be written as (Thavaneswaran, Appadoo, 

Samanta, 2005): 

( )
( ) ( )[ ]∑∞

=−−
=

0
244

4

1 i itt

t

EE
EK

ψεε
ε . (17) 

The values of parameters for a given model are included in individual weights 
values. The formulas derived for kurtosis for given GARCH models with the 
normal distribution and the t-distribution can be found in Górka (2007b). 
 Fornari, Mele (1997) proposed the use of a sign function in the GARCH 
models. The general sign q)GARCH(p,  model is given by: 

ttty εσ=        ( )2
1 ,0~ ttt NIy σ− , (18) 

∑∑∑
=

−
=

−
=

− Φ+++=
l

k
ktk

p

j
jtj

q

i
itit sy

11

2

1

22 σβαωσ , (19) 

where ( )1,0~ iidtε , 0>ω , 0≥iα , 0≥jβ  and 1−ts  is defined by formula (9) 

and ω≤Φ∑ k . The last condition ensures nonnegative values of { }2
tσ .  

 The attempts  to find the general formula for kurtosis of process, similarly to 
the GARCH model (13)-(14), have been made in the literature (Thavaneswaran, 
Appadoo, 2006). However, the general formula of kurtosis presented by Thava-
neswaran, Appadoo (2006) does not give the same results as those obtained by 
author or by Fornari, Mele (1997). Discovering the general formula of kurtosis 
for the sign GARCH process, in my opinion, is possible, however, it needs fur-
ther research. 
 Let, the sign ARCH(1) model be given by: 

ttty εσ= ,       1
2

11
2

−− Φ++= ttt syαωσ , (20) 

where ( )1,0~ Ntε , 0>ω  , 01 ≥α , ω≤Φ , 1−ts  is defined by formula (8). 

Supposing 0<Φ , negative (positive) observation values at time 1−t  corre-
spond to an increase (decrease) in conditional variance values at time t . There-
fore, negative value of Φ  denote negative correlation between volatility and 
returns.  

 Assuming the stationarity conditions of process 2
ty  specified by (20) are 

satisfied the moments are the following: 
( ) 0=tyE , (21) 

( )
1

2

1 α
ω
−

=tyE , (22) 
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( ) ( )
( )2

1
2

2
1

22
1

2

31
1313

αω
αωα

−
−+−Φ

=K . (23) 

Therefore, the sign function does not influence the unconditional mean and 
variance. However the unconditional kurtosis for the process, described by (20), 
increases about ( )

( )2
1

2

2
1

2

31
13
αω
α

−
−Φ  in comparison with ARCH model (with innovations 

from the normal distribution). The conditional assumption of the existence of 
the kurtosis does not change too (Górka, 2007b), i.e. 3

12
1 <α .  

 In the same way, like for the sign ARCH model the kurtosis for the process 
described by the sign GARCH(1,1) model can be obtained. Let the model be as 
follows: 

ttty εσ= ,       1
2

11
2

11
2

−−− Φ+++= tttt sy σβαωσ , (24) 

where ( )1,0~ Ntε , 0>ω , 01 ≥α , 01 ≥β , ω≤Φ  and 1−ts  is defined by formula 
(8). 

 Then, under the stationarity assumption for process 2
ty , we obtain: 

( ) 0=tyE , (25) 

( )
11

2

1 βα
ω
−−

=tyE , (26) 

( )( ) ( )( )
( )( ) 22

1
2

11

2
11

22
11

2

21
1313

ωαβα
βαβαω

−+−
+−Φ++−

=K . (27) 

For the sign GARCH(1,1) model, like for the sign ARCH(1) model, the value of 
unconditional kurtosis increases in comparison with ordinary GARCH model 
(with innovations from the normal distribution). The unconditional mean and 
variance do not change. The conditional assumption of the existence of the kur-
tosis does not change too (Górka, 2007b), i. e. ( ) 12 2

1
2

11 <++ αβα .  

 Summing up, the introduction of sign function into the GARCH model pro-
duces only the increase of kurtosis. If  0=Φ , then formulas (23) and (33) of the 
kurtosis process are reduced to formulas of the kurtosis processes generated by 
appropriate GARCH models (Górka, 2007b). 

4. Sign RCA GARCH Models 
 The RCA GARCH models, in presented form, were proposed by Thava-
neswaran, Appadoo, Samanta (2005). In the RCA GARCH models, like in the 
AR model case, a random coefficient is introduced into the GARCH model 
(Górka, 2007b; Thavaneswaran, Appadoo, Samanta, 2005). When the sign 
function is added to the RCA GARCH model, then the sign RCA GARCH 
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model is obtained. The sign function is obtained in different way than in the 
sign GARCH model case. The sign RCA ARCH(1)  model has the form: 

ttty εσ= , ( ) 2
1111

2
−−− Φ+++= tttt ysaαωσ , (28) 

where ( )2,0~ εσε Nt , ( )2,0~ at Na σ , and 1−ts  is defined by formula (8). 

A negative value of Φ  denotes, that for negative (positive) values of observa-
tions at time 1−t  an increase (decrease) of volatility occurs at time t . If 

22
ttt yu σ−= , then the equation for conditional variance is given by: 

( ) ttttt uysay +Φ+++= −−−
2

1111
2 αω .  (29) 

Therefore, the equation for conditional variance in the sign RCA ARCH(1) 
model can be interpreted as the sign RCA model for 2

ty . Under the stationarity 
assumption for the process 2

ty  we obtain (por. Thavaneswaran, Appadoo, 
2006): 

( ) 0=tyE , (30) 

( )
1

2

2
2

1 ασ
ωσ

ε

ε

−
=tyE , (31) 

( )
( )222

1
2

42
1

31
13

Φ++−
−

=
a

K
σασ
σα

ε

ε . (32) 

In this case, only the kurtosis was changed (it was increased). The necessary 
condition of the existence of the kurtosis of the sign RCA ARCH model is 

( ) 3
1222

1
2 <Φ++ aσασε . It is worth noticing, that this condition, when compared 

to that of the existence of the kurtosis of process generated by RCA GARCH 
model, has been changed. 
 In the case when the parameter standing by 2

1−ty  in the GARCH(1,1) model 
is random, we have the sign RCA GARCH(1,1) model, that should be written 
as: 

ttty εσ= ,     ( ) 2
11

2
1111

2
−−−− +Φ+++= ttttt ysa σβαωσ , (33) 

where ( )2,0~ εσε Nt , ( )2,0~ at Na σ , and 1−ts  is defined by formula (8). 

Under the stationarity assumption for the process 2
ty  we obtain:  

( ) 0=tyE , (34) 

( )
11

2

2
2

1 βασ
ωσ

ε

ε

−−
=tyE , (35) 
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( )
( ) 2

1
222

1
4

11
2

2
1

2
1

321

13

βσασβασ

βσα

εε

ε

−Φ++−−
⎥⎦
⎤

⎢⎣
⎡ +−

=
a

K . (36) 

For the sign RCA GARCH model only kurtosis is increased. The necessary 
condition of the existence of the kurtosis for the process described by the sign 
RCA GARCH(1,1) is ( ) 132 2

1
222

1
4

11
2 <+Φ+++ βσασβασ εε a . 

 In each of the presented cases, the introduction of a sign function caused the 
increase of the kurtosis of process. When 0=Φ  formulas (32) and  (36) for the 
kurtosis of process are reduced to formulas for the kurtosis of the process gen-
erated by appropriate RCA GARCH models (Górka, 2007b). 

5. Summary 
 In this paper the selected models with a sign function are presented to de-
scribe the asymmetric behaviour of the conditional volatility (or, returns in the 
RCA model case) with respect to the occurrence of negative or positive shocks 
(information). The parameter of the sign function, for each presented model, 
causes the increase of kurtosis. The necessary conditions of the existence of the 
kurtosis of the process suggest the limited use of the normal distribution for 
innovations in presented models. 
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