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 Demand systems have been used in applied demand analysis for about fifty 
years. It is usually assumed that both prices of goods under consideration and 
the total expenditure are exogenous, whereas quantities demanded are 
endogenous. Equations of such a system are interpreted as (transformed) 
demand functions. Properties of the functions can be derived from the standard 
microeconomic theory, resulting in complicated (possibly cross-equation) 
restrictions linking structural parameters of the model. Such restrictions 
correspond to the setting of a single utility-maximizing agent. When aggregate 
data are used, the representative-agent assumption is implicitly introduced into 
analysis. Imposing and testing of the economic regularity restrictions is 
therefore vital in order to maintain economic interpretation of the results 
obtained.  
 Traditional time-series applications in the vein assume trend-stationarity of 
all the variables. Modern techniques of dynamic analysis account for non-
stationarity of the macroeconomic time series. Exogeneity restrictions are also 
quite demanding, especially with respect to the total expenditure. An approach 
addressing all the issues has been developed by Pesaran and Shin (2002). They 
formulate a standard model used in dynamic macroeconometrics, namely the 
VECM model, for all the variables. Economic structure corresponding to a 
demand system is then imposed on cointegrating vectors. In the setting, I(1) 
non-stationarity of the observed time series is taken into account and no 
arbitrary exogeneity assumptions are made. Unfortunately, only linear 
cointegrating relations can be modeled within the standard VECM framework. 
The requirement limits the scope of the demand system functional forms that 
can be employed within the VECM approach.  
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 With long-run structure interpreted as corresponding to equations of 
a demand system, all restrictions mentioned above have to be imposed on 
elements of the cointegrating vectors. Methods of imposing and testing such 
constraints (with maximum likelihood inference methods) are reviewed in 
Boswijk and Doornik (2004). In common macroeconomic applications 
however, information concerning economic structure of a model is often quite 
weak. Conversely, in the case discussed here, economic restrictions are quite 
sophisticated, with cross-equation or highly non-linear constraints. The 
constraints become more complicated as the number of goods increases. 
Applications of VECM modeling discussed here differ from the standard ones 
in degree of complexity of the structure imposed. One of the consequences of 
the fact is that standard econometric software packages cannot be used.  
 The paper presents an application of the VECM-demand system approach 
with the emphasis on imposing economic restrictions. Number of the aggregate 
goods considered is such that full VECM model is formulated for twelve 
variables, which is more than in most illustrative applications. A convenient 
functional form of the demand system is employed, namely the Generalized 
Addilog model of Bewley (1986). Equality restrictions are imposed and tested 
with ML methods, and some results concerning inequality constraints are also 
presented. Since the latter pose serious theoretical problems for the ML-based 
statistical inference, only some ad-hoc technical results are presented in that 
case.  
 The plan of the paper is as follows. Firstly, the Generalized Addilog 
functional form is presented and a particular formulation of the economic 
restrictions in the case is discussed. Secondly, a VECM model is briefly 
introduced, together with some methods of imposing long-run cross-equation 
linear and non-linear restrictions. Thirdly, the VECM-demand system approach 
of Pesaran and Shin is described. Finally, empirical application of the methods 
is presented and summarizing remarks conclude.  

 
 
1. Properties of Demand Systems and the GADS Functional Form 

 
 Let wt be a n-vector of the observed expenditure shares corresponding to n 
(aggregate) commodities, pt denote n-vector of the corresponding price indices, 
and let μt represent corresponding total expenditure. A demand system (with 
stochastic structure omitted) can be specified as: 
 ( ) ( )( )θμω ;, ttpfwf t = , t = 1,…, T (1) 
where ω (.) is n-vector of functions representing theoretical expenditure shares, 
θ is k-vector of the structural parameters. The system represents a set of demand 
functions in (transformed) share form, where vector function f(.) accounts for 
possible transformation of the observed and theoretical shares. Demand system 
functional forms are usually derived in a share form because of the convenience 



© C
op

yr
igh

t b
y T

he
 N

ico
lau

s C
op

er
nic

us
 U

niv
er

sit
y S

cie
nt

ifi
c P

ub
lis

hin
g H

ou
se

Imposing Economic Restrictions in a VECM-form Demand System 271

of the economic duality techniques (see e.g. Pollak and Wales (1992)). Shares 
are sometimes transformed with function f(.) in order to achieve linearity in 
parameters. Another reason for the transformation is the fact that shares are 
restricted to the unit interval, whereas additive normally distributed error terms 
(attaining any real values) are often introduced, with transformation used to 
reconcile the discrepancy (see e.g. Fry, Fry and McLaren (1996)).  
 The Generalized Addilog demand system form, described in detail by 
Bewley (1986), with fi(.) being i-th element of f(.), can be written as: 

 ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∑

=
s

t

t
i

n

j
tjijii P

pf
μ

θπχω lnln.
1

, i = 1,…,n, (2) 

where Ps represents Stone price index given by: 

 ∑
=

=
n

j
jtj

s
t pwP

1
lnln , (3) 

and w denotes vector of the average1 shares. Observed shares are transformed: 
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iti w

q
wwf ln , (4) 

where w denotes vector of the average shares (as above), and w+ is defined as: 

 ∑
=

+ =
n

j
tjjt www

1

lnln , 

with qi representing observed quantity demanded of i-th aggregate good. 
Theoretical and observed shares transformed in the way described above can 
attain any real vales (not restricted to the unit interval). 
 Functional form of theoretical shares ω (.) must satisfy certain properties in 
order to be meaningfully interpreted as a demand function (see e.g. Pollak and 
Wales (1992)). These properties are: 

– adding up: theoretical shares must sum to one for any pt and μt, 
– homogeneity: demand functions are homogenous of degree one w.r.t. pt 

and μt, consequently shares are homogenous of degree zero w.r.t. pt and 
μt, 

– symmetry: corresponding Slutsky matrix has to be symmetric…, 
– negativity: … and negative semi-definite (see e.g. Mas-Collel, Whinston, 

Green (1995)). 
The first property arises solely from the fact that share form is analyzed. 

The second property reflects “no money illusion” effect and is expected to hold 
even in aggregate (for heterogeneous consumers). The last two properties reflect 

                                                 
1 In fact w can represent any specified shares. Usually w  is defined as a sample 

mean, but is also assumed non-random which is not fully coherent. Sample mean is 
used as some proxy for a meaningful „typical” situation, which is important because 
economic characteristics’ estimates are calculated at w .  
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the representative-agent assumption (though there are some results on symmetry 
of the aggregate demand function, see Diewert (1980)). Adding-up and 
symmetry generate cross-equation equality constraints. Negative semi-
definiteness of the Slutsky matrix is not often addressed in applied work. This is 
because whereas the first three properties result in equality parametric 
constrains, negativity requires complicated inequality constrains that are 
difficult to deal with in the context of ML inference. 
 In the GADS model 

 1,0,0
111

=== ∑∑∑
===

n

j
j

n

j
j

n

j
ji θχπ  

is required for adding-up property. Homogeneity is satisfied given that: 

 0
1

=∑
=

n

j
ijπ . 

 

 Symmetry of the Slutsky matrix can be imposed only locally (for certain 
values of pt and μt). It is satisfied at a point corresponding to ω (.) = w  if: 
 ijji ππ = . 
 In such approach, shares given by w  are distinguished and parameters of (2) 
can be interpreted as economic characteristics evaluated at w  (see Bewley 
(1986)). Parameters ijπ correspond to elements of the Slutsky matrix, whereas 

iθ  represent marginal shares. 
 One of the shares is determined by values of the remaining n - 1 shares. In 
order to avoid singularity of the contemporaneous variance-covariance matrix, 
one equation is dropped from the system, and its parameters are fully 
determined by parameters of the remaining equations by means of the adding-
up restriction. Consequently, only n - 1 equations are actually estimated. 
 Basic characteristics of the demands can be also calculated; total 
expenditure elasticity and own price elasticity evaluated at w  are given by: 

 
i

i
i w

θ
ξ = ,    i

i

i
ii w

θ
π

ξ −= . 

 
 

2. ML Inference in VECM Model with Restricted Long-run 
Structure  

 
 In the section VECM model is briefly introduced in order to establish the 
notation, and basic facts concerning estimation of restricted long-run structure 
are presented. The exposition follows that of Boswijk and Doornik (2004).  
 Standard cointegrated VECM model for p variables with k lags in the 
original VAR model and normal errors can be written as: 
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iiNgxxx ttt
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where: 
 'αβ=Π , ( )'','

11 tdxx
tt −−

=∗ , mrrrank <<=Π 0,)( ,  
and dt are deterministic terms restricted to the cointegration space, whereas gt 
represents unrestricted deterministic components; α and β are assumed to have 
full column rank equal to r.  
 In the setting it is assumed that all variables in xt are I(1) non-stationary, so 
I(2) and seasonal non-stationarity and cointegration are ruled out for simplicity. 
Ω is assumed non-singular, initial condition matrix X0 is assumed non-random.  
 Elements of α and β represent long-run dynamics of the system: columns of 
β are interpreted as cointegrating vectors (i.e. parameters of the long-run 
relations being stationary linear combinations of variables in xt), whereas 
elements of α transfer impact of deviations from long-run equilibrium onto 
current dynamics of the variables. Long-run weak exogeneity of variables in the 
system results in zero restrictions on the corresponding rows of α. Parameters in 
α and β are unidentified without further restrictions.  
 Standard constraints imposing just-identifying restrictions on α and β, 
together with methods of estimation and asymptotic inference on cointegration 
rank r, known as “Johansen’s procedure” are described e.g. in Johansen (1996). 
Unfortunately, such constraints are of a purely statistical origin, without any 
economic interpretation. Pesaran and Shin (2002) advocate “structural” 
approach, where just-identifying and over-identifying restrictions are imposed 
in a way that allows for economic interpretation of the long-run structure.  
 A method of imposing and testing general linear restrictions on α and β is 
described by Boswijk and Doornik (2004), with α and β formulated as: 
 ( ) ( ) ψαφβ GvechHvec =+= '0 , 
where G, H and h0 are known constant matrices, with φ and ψ containing 
unrestricted parameters and no restrictions linking α and β. Maximum 
likelihood estimates of φ and ψ, provided that identification conditions are 
satisfied, can be found using a switching-algorithm of Oberhofer-Kmenta type, 
with analytic conditional estimators of φ, ψ and Ω evaluated sequentially at 
each step: 

( ) ( )[ ] ( ) ( )
( ) ( )[ ] ( ) ( ) ( )[ ]
( ) '''',

'ˆvec'''',

'ˆvec'''',

11100100

011
11

11
1

11
11

11
1

βααβαββαψφ
αααααψφ

βββφψ

SSSS
hISHHSH

SGGSG

LS

LS

+−−=Ω
⊗−Π⊗Ω⊗Ω=Ω

Π⊗Ω⊗Ω=Ω
−−−

−−−

 

where LS subscript denotes OLS estimates obtained from unrestricted version 
of (5), and S11, S00, S01 being certain sample product matrices defined in 
Johansen’s procedure. With α, β being functions of ψ, φ and most recent 
estimates of Ω, ψ, φ used at each step, the algorithm converges at ML estimates. 
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Such procedure is much less computationally expensive than direct 
maximization of the concentrated log-likelihood function w.r.t. ψ and φ. 
Nevertheless, in practice it seems necessary to use some proposal density to 
draw starting points Ω0 ψ0 , φ0 and run the algorithm for several hundred times 
in some cases.  
 Estimated asymptotic variance-covariance matrix of the ML estimator can 
be computed as an inverse of the information matrix calculated at ML estimates 
according to the formula: 

 ( ) ( )
( ) (

1

11
1

11
1

11
1

11
1

''''
''''1

ˆ
ˆ

−

−−

−−

⎥
⎦

⎤
⎢
⎣

⎡

⊗Ω⊗Ω
⊗Ω⊗Ω

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
HSHGSH
HSGGSG

T
V

ML

ML
as ααβα

βαββ
φ
ψ

) . 

Maximum value of the concentrated log-likelihood (up to an additive constant) 
can be obtained from: 

 ( ) ( )Ω−=∗ detln
2

, Tlc ψφ , 

by replacing Ω with its ML estimate obtained in last step of the algorithm. 
Standard likelihood-ratio test statistics can be used in order to test various 
nested formulations (conditionally on r and k), since it follows asymptotic chi-
squared distribution with degrees of freedom equal to the number of parametric 
restrictions – details are provided e.g. in Boswijk and Doornik (2004).  
 When nonlinear restrictions on α and β are considered, numerical 
maximization of the above concentrated log-likelihood is required, where: 
 ( ) '''', 11100100 βααβαββαψφ SSSS +−−=Ω , 
with α and β being non-linear functions of ψ and φ. 

 
 

3. Dynamic Demand Analysis with GADS in VECM Form 
 
VECM-demand system approach of Pesaran and Shin (2002) is based on 

the assumption that columns of β can be interpreted as corresponding to 
equations of the system (1). Generally, with unrestricted α, r2 restrictions on β 
are necessary to provide identification of the parameters. As an example 
consider β’  = [-I   B] that is, consisting of (minus) identity matrix and block of 
variation-free parameters B. Such a structure generates long run SURE-like 
structure. In equilibrium β’x*

t = 0 which is parallel to the structure generated by 
(1), (2) and (3) with all the variables on the right-hand side. 

Define xt as: 

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= − s

t
tntnit

tP
ppwfwfx

μ
lnlnln' 1t1t LK , 

with dt = 1, x*
t = (xt‘   1)’ and arrange β’ as: 
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One (n-th) equation is dropped from the system to avoid singularity of Ω. If the 
true cointegration rank r is equal to n – 1 and deterministic components are 
properly specified, cointegrating vectors can be interpreted as equations of the 
GADS system. When unrestricted constant is introduced into the VECM model, 
one row of β containing χi parameters is dropped, estimates of the latter can be 
derived from estimates of Ψ, see Johansen (1996). When elements of H and h0 
are properly arranged, homogeneity and symmetry restrictions described above 
can be imposed or tested; G is equal to identity matrix or certain columns are 
dropped, if exogeity restrictions are imposed. Symmetry can be imposed only 
locally at w . 
 It can be seen that β contains block of ijπ  parameters corresponding to 
elements of the Slutsky matrix. Negativity (imposed locally at w ) requires 
square block of the parameters with both indices ranging from 1 to n – 1 to be 
negative definite. Such restriction is cross-equation non-linear inequality 
constraint. As mentioned above, formal treatment of inequality constraints 
within ML inference poses quite advanced problems. In the paper we describe 
a method that can be used to impose the restriction. In practice obtained 
estimates are at a border solution, so its formal status is not discussed here. 
 L. J. Lau (1978) proposed a method of imposing concavity constraints using 
Cholesky factorization. Any (m × m) symmetric square matrix A can be 
factorized as A = L D L’, with D being a diagonal matrix with m nonzero 
elements and L being a lower-diagonal matrix with ones on the diagonal. If A is 
negative definite, all diagonal elements of D are negative. With such 
factorization, the mentioned above block of β can be written as a function of m 
negative elements of D and (m2 - m)/2 variation-free elements of L. This 
translates complicated non-linear restrictions into a simple constraint on 
m = (n – 1) parameters. Numerical optimization of the log-likelihood function 
with respect to free elements of β  (with no constraints on α, the latter can be 
concentrated out) leads to point estimates of the GADS parameters that satisfy 
(locally) all the regularity conditions. This can be useful if some further 
application require fully regular point estimates of the Slutsky matrix. 

 
 

4. Empirical Application: Analysis of the Aggregate UK Data 
 

 The dataset analyzed here was used by Deschamps (2003). It consists of 172 
quarterly deseasonalized observations covering period of 1955:1 – 1997:4. Six 
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consumption categories are included: food, drinks, footwear and clothing, 
energy, other non-durables, rent.  

 
w  0.28 0.17 0.12 0.11 0.17 0.14 

Case A: Estimated β with k = 2, r = 5, logl = 10986  
 1 2 3 4 5 6 

f1(w1) -1 0 0 0 0  
f2(w2) 0 -1 0 0 0  
f3(w3) 0 0 -1 0 0  
f4(w4) 0 0 0 -1 0  
f5(w5) 0 0 0 0 -1  
ln p1 0.078 -0.0284 0.007 -0.07 0.035 -0.0215 
ln p2 -0.0284 -0.0809 0.089 0.0239 0.0076 -0.0112 
ln p3 0.007 0.089 -0.0589 0.011 -0.0446 -0.0035 
ln p4 -0.07 0.0239 0.011 0.0243 0.0143 -0.0034 
ln p5 0.035 0.0076 -0.0446 0.0143 -0.0617 0.0494 
ln p6 -0.0215 -0.0112 -0.0035 -0.0034 0.0494 -0.0098 

ln (μ/Ps) 0.3203 0.1741 0.1062 0.1142 0.1335 0.1517 
Case B:Estimated β with k = 2, r = 5, logl = 10966 

ln p1 -0.0004 0.0056 -0.0058 -0.0002 0.0015 -0.0006 
ln p2 0.0056 -0.0755 0.0792 0.0029 -0.0204 0.0083 
ln p3 -0.0058 0.0792 -0.083 -0.0031 0.0214 -0.0087 
ln p4 -0.0002 0.0029 -0.0031 -0.0001 0.0008 -0.0003 
ln p5 0.0015 -0.0204 0.0214 0.0008 -0.0055 0.0022 
ln p6 -0.0006 0.0083 -0.0087 -0.0003 0.0022 -0.0009 

ln (μ/Ps) 0.381 0.2005 0.1132 0.1037 0.0324 0.1692 
        (shaded entries correspond to restricted parameters) 

 
Case A Estimated income and own price elasticity, 

 FOOD DRINK CLOTH ENE OTH RENT 
ξi 1.13 1.00 0.87 1.04 0.80 1.06 

Std err 0.06 0.06 0.11 0.09 0.19 0.08 
ξii -0.05 -0.64 -0.59 0.11 -0.50 -0.22 

Std err 0.17 0.06 0.24 0.13 0.40 0.05 
Case B Estimated income and own price elasticity 

 FOOD DRINK CLOTH ENE OTH RENT 
ξi 1.36 1.18 0.94 0.94 0.19 1.13 
ξii -0.38 -0.64 -0.8 -0.1 -0.06 -0.18 

  
 Properties of the dataset with respect to cointegration and aggregate demand 
analysis are subject to detailed analysis in Mazur (2005). Here it can be 
mentioned that the variables analyzed seem to be I(1) non-stationary with linear 
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trends, and the number of cointegrating relations can be assumed to be 5, which 
is in accordance with VECM-demand interpretation.  
 With k = 2 and unrestricted constant in VECM, with just – identified 
parameters, maximized log-likelihood is 11021. With homogeneity only 
imposed (5 constrained parameters) it becomes 11004, with symmetry and 
homogeneity (15 constrained parameters) it is 10986. All the restrictions are 
therefore rejected asymptotically with LR test (conditionally on selected values 
of r and k). Balcombe (2004) reports similar results, attributing the rejection to 
small sample properties of the test procedures. Below are presented results of 
the estimation with homogeneity and symmetry imposed, with no exogeneity 
restrictions (Case A) and with additional imposition of negativity (Case B). 
 It can be seen that imposing negativity results in estimates of own-price 
elasticities that are more in accordance with economic intuition than in case A. 
Estimated income elasticities have quite plausible values in case A; imposing 
negativity seems to influence estimated demand elasticity of the other goods. 
Estimated values of the characteristics in the restricted case are difficult to 
interpret, since there is no theory supporting calculation of the standard errors. 
Sound economic interpretation would require considering other functional 
forms and broader range of deterministic specifications.  
 All the calculations were conducted using author’s routines written in Ox 
(Doornik (2002)). It should be noted that with 6 aggregate goods, structure of 
the restriction matrices G and H is too complicated to be conformable with 
standard econometric packages. Numerical optimization necessary to impose 
negativity constraint was conducted with BFGS algorithm being part of the Ox 
system.  

 
 

5. Conclusions 
 

 The paper discussed problems of imposing and testing economic regularity 
restrictions in VECM-demand systems. In traditional demand analysis, 
regularity restrictions were often statistically rejected but nevertheless imposed 
(see Keuzenkamp and Barten (1995)). In the modern, dynamic approach, 
similar issues seem to arise. Such a result is perhaps due to small sample 
distortions, so exact inference techniques should be employed – an example 
using bootstrap is provided by Balcombe (2004).  
 Another statistical problem is that of testing inequality constraint (like the 
negativity constraint arising in demand analysis). ML inference techniques 
seem unsatisfactory in the case.  
 Inference in the VECM model is sequential – it is separately decided what 
lag length should be used, what is the cointegration rank, what specification of 
the deterministic components is plausible and finally structural and exogeneity 
restrictions are introduced. It would be desirable to be able to conduct joint 
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inference on interesting aspects of the VECM – demand system. All the 
statistical problem mentioned above seem to suggest that application of the 
bayesian inference would be very promising in the area.  
 Another limitation of the analysis presented here is linearity of the 
functional form used. In traditional demand analysis, linear forms are 
abandoned in favor of the complicated non-linear specifications. Unfortunately, 
non-linear cointegration techniques are not yet well developed. The (quarterly) 
data used suggest that there is some possibility of seasonal cointegration also.  
 However, it should be noted that GADS form of demand system seems to be 
quite an interesting alternative within the VECM approach, dominated by 
Almost Ideal model of Deaton and Muellbauer (1980). It is of particular interest 
that it allows for imposition of the negativity constraints when Cholesky 
factorization is used as proposed by Lau (1978).  
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