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1. Introduction 
 

The main goal of this paper is an application of the Bayesian inference in 
Value at Risk (VaR) prediction. As a VaR forecasts we use quantiles of the pre-
dictive densities obtained from AR(1)-GARCH(1,1) models (Osiewalski and 
Pipień 1999, 2003), with α-Stable or Skewed-t conditional distributions; Pipień 
(2005). From the definition, the predictive distribution yields probabilistic and 
easy to interpret information about ex ante uncertainty of forecasted variables. 
The predictive density combines the sampling assumptions of considered 
model, with uncertainty about model parameters. As a result, Value at Risk 
taken from predictive distributions should yield a flexible tool of risk measur-
ing.  

Based on the time series of the PLN/USD exchange rate, we present the 
dynamics of the predictive Value at Risk estimates obtained in each model. 
Starting from the dataset consisting of 100 observations, every time when we 
updated daily observation into dataset, we recalculated posterior distribution of 
parameters and derive predictive distributions of daily returns of PLN/USD ex-
change rate. Using various testing procedures (see Kupiec 1995 and Lopez 
1999) we compare the accuracy of the predictive VaR estimates among models. 

We also present the Bayesian prediction of the minimal capital require-
ments for market risk. The current regulatory framework, which is deeply based 
the New Capital Accord, proposed by the Basle Committee on Banking Super-
vision, allow that financial institutions can use their internal models of VaR 
forecasts as the basis for calculation of the capital requirements. Based on the 

                                                      
1 Research supported by a grant from Cracow University of Economics. 
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predictive VaR forecasts, obtained in models M1 and M2, we assessed the capital 
charge for market risk. We check if the quality of the forecasts is sensitive to 
the type of the conditional distribution in GARCH framework. 
 
 
2. Predictive Value at Risk Concept 
 
We denote by y(t)=(y1,...,yt) the vector of observed up to day t (used in estima-
tion in day t) daily growth rates and by yf

(t)=(yt+1,...,yt+n) the vector of forecasted 
observables at time t. Let assume, that the following density defines the i-th 
sampling model (i=1,2) at time t: 
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Given the prior distribution, i.e. the marginal distribution of all model parame-
ters p(θ,ηi|Mi), the following joint density represents i-th Bayesian model (Mi): 
 p(y(t), yf

(t)| Mi, θ,ηi)⋅p(θ,ηi |Mi). 
From the joint density of parameters and observables it is possible to calculate 
the posterior distribution of any function of parameters and future daily returns. 
In particular, we obtain predictive distribution of yt+n, i.e. the distribution of 
daily return at day t+n conditional given the vector of observed daily returns 
y(t)) and model Mi. We denote the density of the underlying predictive distribu-
tion by p(yt+n|y(t),Mi). It is the marginal density, obtained from the joint predic-
tive distribution of the vector yf

(t)=(yt+1,...,yt+n): 
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Given predictive density p(yt+n|y(t),Mi) we define by VaRt(α,n|Mi) the minus 
quantile of order α of this distribution: 
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and call it the predictive Value at Risk at time t (calculated on the basis of the 
vector of observations y(t)) with the confidence level α and forecasting horizon 
n. The quantity VaRt(α,n|Mi) defines the maximal potential loss of value of the 
instrument with quoted price xj, which may occur after n days with predictive 
probability (in model Mi) equal to α. The properties of the predictive VaR defi-
nition is studied in Pipień (2005). 

According to the Basle Committee suggestions, the general market risk 
capital requirement Ct is based on Value at Risk estimates calibrated to a ten 
day forecasting horizon and to probability α=0.01. At time t, the capital charge 
for market risk is equal to maximum of the value of the average Value-at-Risk 
estimated over the previous sixty trading days (which is approximately one 
quarter to the trading year), or to the Value at Risk calculated at time t. This 
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charge is multiplied by a “scaling factor” At between three and four. The follow-
ing formula incorporates predictive Value at Risk into capital charge scheme: 

 )}|10,01.0(,)|10,01.0(
60
1max{

60

1
it

i
iittt MVarMVarAC ∑

=
−= ,           (3) 

where At depends on the number of Value-at-Risk exceptions in previous 250 
days according to the agreements presented in details by Hendricks and Hirtle 
(1997). 
 
 
3. Evaluation of VaR Forecasts 
 
 In empirical part of this paper, in order to evaluate predictive VaR forecasts 
generated from models Mi, we use in particular Kupiec test. This very easy to 
implement tool of an ex post analysis of Value at Risk forecasts bases on the 
following likelihood ratio test: 
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where α̂  is the estimator of the probability of success, 
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of the Bernoulli random variable ξt defined in the following way: 
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According to Kupiec criterion (4), given the significance level x%, the model Mi 
generates acceptably accurate forecasts if H0 (α=α ) cannot be rejected, other-
wise Mi is called inaccurate; see Kupiec (1995), Lopez (1999).  
 Quite similar approach of measurement of accuracy of the VaR forecasts 
can be derived from Central Limit Theorem (CLT) for time series {ξt; 
t=T,T+1,...T+T’}. From CLT we obtain, that: 
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Hence, for large values of T’, α̂  – defined by (5) – is unbiased and asymptoti-
cally normal estimator of α . The small sample approximation of the variance 
of the asymptotically distribution of this estimator is given by the formula:: 
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This leads to the formula fo the standard error of the estimation of α : 
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From asymptotic normality (6), it is possible to build the confidence interval for 
α  (given a confidence level x%): 
 ( ))ˆ(ˆ);ˆ(ˆ αααα dqdq xx +− ,                                (9) 
where qx is the quantile of order 1-x% of the standardised normal distribution. 
Once again, the model Mi generates acceptably accurate forecasts if – for a 
given x% – probability value α does not lie inside the confidence interval, oth-
erwise Mi can be called inaccurate. 
 As an alternative to the hypothesis-testing framework, Lopez (1999) pro-
posed an evaluation method that uses loss function approach. This approach 
deeply involves standard forecast evaluation techniques, which are based on 
how analysed forecasts minimise defined loss function, that represents the 
evaluator’s concern. We considered three different loss functions. As a first we 
chose very simple binary loss function proposed by Lopez (1999): 

                       (10) 
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Additionally, we consider the following loss function: 
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 Just like in (10), a score of 1 is imposed in (11) when an exception occurs, 
but now an additional term, based on the magnitude of the exception, is in-
cluded. The numerical score increases with the magnitude of the exception and 
can provide additional information in evaluation of models with comparable 
number of exceptions. As a result, (11) penalises models more severely as com-
pared to BL. Sarma, Thomas and Shah (2003) explain, that (11) is able to ex-
press the regulatory concerns in model evaluation. Hence we call (11) the Regu-
latory Loss (RL). However, no score is attached in case if exception does not 
occur. 
 The basic application of Value at Risk forecasts is the assessment of risk 
exposure of financial institution (firm) and also it is a basic point in internal risk 
management. Since in a firm there is a conflict between the goal of safety (pro-
tection from risk) and the goal of profit maximisation, it is of particular interest 
to build the loss function, which would be able to evaluate VaR forecasts from 
the point of view of these conditions. As suggest Sarma, Thomas and Shah 
(2003) a mechanism of Value at Risk forecasting, which reported too high val-
ues of VaRt(α,n|Mi), would force the firm to hold too much capital (as a charge 
for market risk) imposing the opportunity cost of capital upon the firm. They 
propose the Firm’s Loss (FL) which penalise VaR exceptions, but which also 
imposes penalty reflecting the cost of capital suffered because of too conserva-
tive VaR forecasts. The FL loss function takes the form: 
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where c>0 measures the opportunity costs of capital; see Sarma Thomas and 
Shah (2003). As seen from (12), the numerical penalty, connected with too con-
servative Value at Risk forecasts, is proportional to VaRt(α,n|Mi). The coeffi-
cient c>0 is time invariant, reflecting assumption of constancy (over time) of the 
opportunity costs of capital. 
 In all presented situations the total loss f(i), connected with Value at Risk 
forecasts in Mi, is equal to sum of ft

(i): 
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4. Competing Volatility Models 
 
 In this paper the predictive Value at Risk estimates are obtained within two 
GARCH models, first with conditional Skewed Student-t (model M1) and sec-
ond with α-Stable conditional distribution (model M2). Both specifications were 
presented in details by Osiewalski and Pipień (2003) and also by Pipień (2005) 
respectively. Hence we consider VaRt(α,n|M1) and VaRt(α,n|M2), where: 
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 We also analyse the results of the predictive Value at Risk obtained on the 
basis of much simpler model assumptions, than those forming M1 and M2. As a 
starting point we assumed, that at time t+n the conditional (given the whole 
past) distribution of daily returns is a normal distribution with constant variance 
σ. In model M3, we use for Bayesian estimation the whole dataset available at 
time t (namely y(t)), while in case of model M4 we use only y(t,k)=(yt-k-1,...,yt), for 
a given k. The resulting forecasts of VaR, namely VaRt(α,n|M3) and 
VaRt(α,n|M4) such, that: 
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can be interpreted as a Bayesian interpretation of methods of Value at Risk 
forecasts commonly used in risk management practice. Those methods are dis-
cussed in Jorion (1996), Best (2000), and applied for Polish financial data by 
Jajuga, Kuziak, Papla and Rokita (2001). 
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5. Empirical Results 
 
 In this part we present an empirical example of dynamic forecasting of 
Value at Risk within the Bayesian framework. We considered T+T'+1=1657 
observations of daily returns on the PLN/USD exchange rates from 05.02.96 till 
04.09.02. Starting at t=T=100 we calculated posterior distributions of parame-
ters in all competing models, based on dataset y(t) for each t=T=100 up to 
t=T+T'=1657. As a result of daily updating observations into y(t) we obtained 
T'+1=1558 posterior distributions of parameters in Mi (i=1,2,3,4) and 
T'+1=1558 predictive distributions p(yt+n|y(t),Mi) (t=T=100,...,T+T') for n=1 and 
n=10. The main purpose of the following presentation is to check sensitivity of 
the predictive Value at Risk and capital requirements for market risk with re-
spect to new observations dynamically updated into dataset y(t). 
 In Table 1 we put the results of evaluation of the Value at Risk forecasts 
with respect to criteria discussed in Section 3. In each model, based on time se-
ries {VaRt(α,n|Mi); t=100,...,1657} for α=0.01, 0.05 and 0.1, we estimated 
probability of success of the random variable ξt (see (12)). We calculated α̂  
(see (5)) and d(α̂ ) (see (7)) and also p-values of Kupiec (1995) test (p-value 
LR; see (4)). The last three columns of Table 1 present evaluation of VaR fore-
casts based on the loss function analysis. We derived numerical total loss (13) 
obtained by application of the Binary Loss function (BL; see (10)), Regulatory 
Loss (RL; see (11)) and Firm’s Loss (FL; see (12)). 
 The presented results clearly shows, that, from the point of view of Kupiec 
(1995) test, all considered specifications are rejected. Very low values of p-
value in all models clearly make each model inaccurate. As an exception we ob-
tained relative great p-value in case of model M4, for k=30 and α=0.01, and 
model M3 (α=0.05) as well as in models M4, k=5 and M3 (α=0.1). The results of 
Kupiec (1995) test, based on the relative long time series {VaRt(α,n|Mi) 
t=100,...,1657}, strongly confirm, that there is no linkage between frequency of 
days, when daily return exceeds Value at Risk forecast (ex post) and the level of 
risk defined by probability α. 
 The evaluation of VaR forecasts done on the basis of the loss function ap-
proach yields very distinct results than those generated by testing framework. 
Evidently, model M2 (GARCH process with α-Stable conditional distribution) 
is a source of very conservative forecasts VaRt(α,n|M2). In particular, in the 
whole forecasting period, there were only BL=3 exceptions for α=0.01 in model 
M2. Other specifications generate relatively greater values of loss BL. With re-
spect to the BL, model M1 (GARCH process with Skewed Student-t conditional 
distribution) is the worst (the most liberal) specification in each case of the 
probability α. 
 As regards with Regulatory Loss (RL) the ranking of competing specifica-
tions is rather unstable with respect to the changes of the value of α. There is no 
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doubt, that for each values of probability α, Stable-GARCH generates the 
smallest loss RL. But other models, especially conditionally Skewed Student-t 
GARCH, change theirs position in ranking quite dynamically as the level of the 
probability α changes. 
 The Firm’s Loss function (FL), which captures the opportunity costs of 
capital, generates very different ranking of specifications, than those obtained 
on the basis of BL and RL analysis. This loss function appreciates liberal char-
acter of VaR forecasts obtained in model M1. In turns out, that among all con-
sidered specifications, conditionally Skewed Student-t GARCH yields the 
smallest value of the opportunity cost. Also, very conservative Stable-GARCH 
is evaluated as the worst source of VaR forecasts. 
 In each model, M1, M2, M3, M4, for k=5 and k=30, we calculated 
VaRt(0.01,10|Mi) for t=350,...,1567. On the basis of the resulting time series of 
10 day predictive VaR estimates we assessed the capital charge Ct, according to 
the formula (3). In Tables 2 and 3 we put in the first column the plots of the 
capital requirements Ct (t=350,...,1657) and, in the second column, the plots of 
scaling factor At (t=350,...,1657) obtained in all competing specifications. In or-
der to check the sensitivity of Ct and At with respect to the new observations dy-
namically updated into dataset y(t) in both tables the last row contains daily re-
turns yt, for t=350,...,1657. 
 As seen from both Tables the capital charge Ct is very sensitive in all mod-
els with respect to the new observations updated in y(t). Some occasional outliers 
and intensification of the volatility make the capital charge to increase rapidly 
(see Table 1, Figures A and C for t about 350, 650 and 1370), while low volatil-
ity period require small amount of capital as a charge for market risk (see Table 
1, Figures A and C, for t=450,...,500, t=800,...900). The correlation coefficient 
between time series Ct; t=350,...,1657 generated by M1 and M2 equals 0.65). In 
the regions of unexpected jumps of PLN/USD exchange rate (namely for t 
about 650 and 1370), in spite of significant differences in forecasting mecha-
nisms discussed above, both models predict quite similar minimal capital charge 
Ct. For t=645 the capital charge obtained from M1, as well as from M2, crosses 
7% and for t=1370 it is very close to 7% in both models. Apart from these situa-
tions M2 generates higher average level of the capital charge than model M1. 
The mean Ct equals 4.58% in model M2 while in M1 it does not cross the value 
3.78%. 
 The fundamental differences between models M1 and M2 in the capital 
charge forecasts are shown on Figures B and D in Table 2, presenting dynamic 
behaviour of scaling factor At. Since M2 generates very conservative 
VaRt(0.01,10|Mi) forecasts, it remains in the safe green zone for the whole pe-
riod t=350,...,1657. Hence, the scaling factor is constant and equals At=3 for 
each t. In case of model M1 we observe volatile behaviour of At as the new ob-
servations are updated into dataset. Initially, for t=320,820, the number of ex-
ceptions K is very high. Hence At=4, for t=320,820, and M1 reaches the risky 
red zone. We observe, that for t=800,...,1100, the number of exceptions K sig-
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nificantly decreases, making model M1 safer. For t greater than 1100 Skewed-t 
GARCH model does not reach the red zone, remaining in the yellow zone or, 
for quite short period of time, in the green zone (for t less than 1200). 
 Table 3 presents time series of Ct and At obtained in models assuming nor-
mality of sampling predictive density of yt+n. The dynamics of capital charge 
clearly depends on the number of observation included in likelihood in models 
M3 and M4. In case of model M4, which uses only k=5 past observations in esti-
mation at time t, the resulting time series of Ct I very sensitive with respect to 
the new observations dynamically updated into y(t,k); see Figure C. Figure E in 
Table 3 shows, that model M3, which uses in estimation the whole series y(t), 
generates capital charge estimates rather insensitive with respect to the new ob-
servations. After including more than t=1100 observed daily returns, the total 
impact of new, and even very volatile, observations seems to be very weak. 
 Also the dynamics of scaling factor, reflecting the safety of each model’ 
VaR forecasts, clearly depend on the number of observations used in estimation. 
We observe, that model M4, for k=30 does not reach the red zone, remaining 
quite safe source of predictive Value at Risk estimates; see Figure B. The aver-
age scaling factor in case of models M3 and M4, for k=5 is relatively greater, 
than this obtained in M4, for k=30. As a result, M3 and M4, for k=5 are subject to 
the higher average capital charge than in case of M4, for k=30. 
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Table 1. Evaluation of VaR forecasts VaRt(α,1|y(t),Mi) for α=0.01, 0.05 and 0.1.  
 
 α̂  )ˆ(αd  p-value I BL RL FL (c=1) 

α=0.01 
M1 0.0334 0.0046 1.40e-7 52 266.11 2010.88 
M2 0.0020 0.0011 1.81e-13 3 125.11 3481.88 
M4; k=30 0.0173 0.0033 0.0133 27 258.80 2442.11 
M4; k=5 0.0308 0.0044 1.00e-6 48 281.76 2339.58 
M3 0.0205 0.0040 0.0017 32 297.48 2120.62 

α=0.05 
M1 0.0802 0.0069 5.60e-6 125 408.92 1573.55 
M2 0.0154 0.0031 <1e-18 24 250.36 2244.90 
M4; k=30 0.0353 0.0047 8.34e-4 55 294.70 1830.55 
M4; k=5 0.0629 0.0065 0.0180 98 344.42 1806.10 
M3 0.0539 0.0057 0.2469 84 436.02 1678.79 

α=0.1 
M1 0.1444 0.0089 3.06e-7 225 509.71 1333.86 
M2 0.0424 0.0051 <1e-18 66 388.51 1813.80 
M4; k=30 0.0738 0.0066 3.86e-5 115 442.08 1602.86 
M4; k=5 0.0950 0.0074 0.0250 148 413.28 1549.46 
M3 0.9031 0.0074 0.1732 145 504.22 1430.73 

 
Table 2. Capital requirements for exchange rate risk Ct (t=100,...,1657) and scaling fac-

tor At obtained in M1 and M2. 
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Table 3. Capital requirements for exchange rate risk Ct (t=100,...,1657) and scaling fac-
tor At obtained in M3 and M4 (for k=30 and k=5). 
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Figure A. (M4; k=30) 
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Figure B. (M4; k=30) 
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Figure C. (M4; k=5) 
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Figure D. (M4; k=5) 
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Figure E. (M3) 
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Figure F. (M3) 
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