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1. Introduction 

 
 One of the basic assumptions in the (theoretical) finance is that the 
logarithmic prices of financial series of assets or exchange rates, display 
random walk-type behavior. Econometric tradition has been to incorporate 
ARIMA models to capture the dynamics of economic time series. However, 
recent empirical test results for finance series suggest that they are often 
processes that have a root that is not constant, but is stochastic. These processes 
are known as stochastic unit root process (STUR). One of their important 
property is that they have a root that is time-varying around unity, therefore 
they can be stationary or explosive.  Many empirical results on the identification 
of STUR processes are encountered in Leybourne, McCabe and Tremayne 
(1996), Granger and Swanson (1997), Jones and Marriott (1999), Sollis, 
Leybourne and Newbold (2000), Kwiatkowski and Osińska (2004), 
Kwiatkowski (2005a and 2005b).  
 The aim of this paper is to present with the Bayesian estimation and testing 
of STUR processes, where the random parameter follows first-order stationary 
autoregressive process. Probably the first attempt to employ the Bayesian 
inference was presented in Jones and Marriott (1999). In their paper they have 
used Granger and Swanson (1997) model to derive posterior marginals and 
summary statistics. This paper is concerned with the STUR model introduced 
by Leybourne, McCabe and Tremayne (1996), which is computationally less 
demanding, and easy to implement. The marginal posteriors of parameters and 
summary statistics can be obtained by Gibbs sampler.  
                                                 

1 This research was supported by Polish Committee of Science grant  
2 H02B 015 25; e-mail: jkwiat@uni.torun.pl. 
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The paper is organized as follows. Section 2 presents the stochastic unit root 
model as well as its Bayesian estimation and testing.. Section 3 provides an 
empirical application to the stock returns and exchange rates of zloty, for 
weekly sampling frequencies. Section 4 concludes. Details on the 
implementation of Gibbs sampler for STUR models are provided in the 
appendix.  
 
 
2. The Model and Bayesian Inference 
 

The STUR (stochastic unit roots) processes  are presented by Leybourne, 
McCabe and Tremayne (1996) and Granger and Swanson (1997). Consider the 
following STUR model: 
 
 ( ) tttt yy εβ ++= −11 , (2.1) 
 
where denotes an observed process at time t and tty  β  is a first-order stationary 
autoregressive process: 
 
 ( ) ttt ηαβφαβ +−+= −11 . (2.2) 
 
Parameter 1φ  is the autoregression coefficient, which is a number between -1 
and 1. Here tε  and tη  are white noise processes having zero mean and 

respective variances  and . We also assume that 2σ 2ω tε  and tη  are mutually 
independent. 

When  and 0,0 1
2 == φω 0=α ,   follows the random walk process. For 

 and free 
ty

02 >ω ( )αφ ,1 , we have a process with a unit root in mean, called a 
stochastic unit root process. The parameters tβ  follow an autoregressive 
mechanism, so the original series tends to possess one unit root in the long run, 
but in sub-periods may have stationary or explosive roots.   

Let assume that  is a process with stationary first differences :  ty tyΔ
 
 tttt yy εβ +=Δ −1 , (2.3) 
 ( ) ttt ηαβφαβ +−+= −11 , (2.4) 
 
where  denotes first differences of the observed process  at time t. Values 
for autoregressive parameter 

tyΔ ty

1φ  lie in the stationary region; ( )1,11 −∈φ . 

Stochastic processes  and  are assumed to be 
independent.  

),0(~ 2σε Nt ),0(~ 2ωη Nt
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 Due to the Normality of the unobserved random processes tβ  and tε , we 
can express the model in the following  structure: 
 

 ( )2
1

2
1 ,~,, σβσβ −−Δ ttttt yNyy ,     

 ( )( )2
11

2
11 ,~,,, ωαβφαωφαββ −+ −− ttt N . (2.5) 

 

 For the special case of (2.5) in which the stochastic unit root process for  
follows an for 

ty

tβ  iid process we can inference of parameters of interest by 
putting 01 =φ .  
Therefore the sampling distribution is: 

 , ( ) ( )( ) (∏ ∏
= =

−−− Δ−+=Δ
T

t

T

t
tttNttN yyffyyp

1 1

2
1

2
1101 ,|,|,,,| σβωαβφαβθββ )

  (2.6) 
where ( )'...,,, 21 Tyyyy ΔΔΔ=Δ , ( )'...,,,, 121,01 −− = Tyyyyy , ( )',,, 22

1 σωφαθ = , 

R∈α , ( )1,11 −∈φ , ,  and +∈ R2ω +∈ R2σ ( ) T
T R∈= '...,,, 21 ββββ ,  and T  

denotes number of observations, ( )2,| wcxf N  denotes Normal distribution with 
mean  and variance  c 2w 2.  
 The prior information about all parameters is reflected by the following 
density: 
 

 ( ) ( ) ( ) ( ) ( )22
2

11
22

1
2 ,|,|,|,|

11
bafbafffp GamInvGamInvNN ωσσμφσμαθ φφαα −−∝ ,

   (2.7)
 where ( )baxf GamInv ,|−  means Inverse Gamma distribution with shape 
parameter  and scale parameter . a b
 Since the parameter tβ  is a part of the model, we can assume that all 
information about tβ  is included in the likelihood (Jones and Marriott, 1999; 
Jostova and Philipov, 2005). For the autoregression coefficient 1φ  the prior 
density is truncated to the stationary region ( )1,1− .   
 Under this prior structure (2.7), the joint posterior density of the parameters 
is: 

  
( ) ( )( ) (

( ) ( ) ( ) ( ).,|,|,|,|

,|,|,,|,

22
2

11
22

1
2

1 1

2
1

2
1101

11
bafbafff

yyffyyp

GamInvGamInvNN

T

t

T

t
tttNttN

ωσσμφσμα

σβωαβφαββθβ

φφαα −−

= =
−−−

×

Δ−+∝Δ ∏ ∏ )

                                                

   (2.8) 

 
2 The statistical distributions used in this paper are presented e.g. in Gelman, Carlin, 

Stern and Rubin (1997). 
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 In order to obtain the posterior marginals and summary statistics for them, 
we could employ Gibbs sampler algorithm. For STUR model it is quite easy 
because, the proper prior densities (2.7) leads to standard conditional posteriors. 
The details of Gibbs sampler for STUR model are included in the appendix.  
 In the Bayesian approach to comparing models, it is considered useful to 
employ probabilities to represent degree of belief associated with alternative 
models. For the STUR model we can test whether the random process follows 
the first-order autoregressive process or the white noise process. We can also 
test whether the data can be considered as generated by the STUR or the exact 
unit roots process. 
 Using Bayes’s theorem, the posterior odds ratio for this problem is given 
by:  
 

 
( )
( )

( )
( )

( )
( )j

i

j

i

j

i

Myp
Myp

Mp
Mp

yMp
yMp

Δ
Δ

=
Δ

Δ
, 

 
where  and  are the two models we are comparing. Assigning equal 
prior model probabilities 

iM jM
( ) ( ) 5.0== ji MpMp , comparison of the models can 

be summarized by the Bayes factor: 
 

 
( )
( )j

i
ij Myp

Myp
B

Δ
Δ

= . (2.9) 

 
If this ratio is larger then one, we can say that the data supports model  over 
model . 

iM

jM
 The practical difficulty in implementing posterior odds ratio is the 
computation of the marginal data density value ( )iMyp Δ . For the STUR model 
this integral is not analytically tractable. One of simple, numerical approaches is 
to consider Newton and Raftery’s (1994) harmonic mean estimator: 
 

 ( ) ( )( )∑
=

−− Δ=Δ
K

k
i

k
iKi MypMyp

1

111 ,θ , (2.10) 

 
where the  are drawn from the posterior using the Markov chain Monte 
Carlo (MCMC) methods. This estimator is easy to implement but can be quite 
unstable, because it fails to obey the Gaussian central limit theorem (Carlin and 
Louis, 2000). Although for many applications the Newton and Raftery (N-R) 
estimator is stable enough and close to the true value of marginal data density 
(Osiewalski and Pipień, 2004). In the STUR case, the N-R estimator is unstable 

( )k
iθ
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because the small conditional likelihood values overly influence the harmonic 
mean values. Therefore we can only test STUR process with random parameter 
which follows white noise. In that case we can integrate out analytically the 
density (2.6) with respect to tβ . The conditional distribution of  at time t  is 
Normal with mean 

tyΔ

1−tyα  and variance . Similar approach is used by 
Nicholls and Quinn (1982) for the likelihood of RCA models. 

2
1

22
−+ tyωσ

 In order to test autoregression of the random parameter, we can use less 
formal approach, namely the highest probability density (HPD) interval. This 
interval contains all a posteriori most likely values of 1φ .    
 
 
3. Application to Polish Financial Time-series  

 
 We apply the STUR model to weekly returns on stock and stock indexes 
listed at the Stock Exchange in Warsaw. We also estimate the STUR model to 
weekly exchange rates of foreign currencies in zlotys. The weekly stock and 
exchange rates returns cover almost 5-year sample periods from January 2000 
until September 2005. It gives approximately 292 observation. We use the 
logarithmic transformations of the original series , computed as . 
Diffused but proper joint prior distributions reflects the lack of information 
about parameters. Values for autoregressive parameter 

tP ( )tt Py ln=

1φ  lie in the stationary 
region between -1 and 1. Hence, for these parameters, we select a truncated-
Normal prior with mean 0 and large variance equal to 10. For the variance  
and , we use an Inverse Gamma prior with shape and scale parameters equal 
to 0.01. For the unconditional mean parameter, 

2σ
2ω

α , Normal prior with mean 0 
and variance equal to 1 is selected. Joint prior structure is expressed by equation 
(2.7). All models have equal prior probabilities. 

We apply the Bayesian methodology for two mutually exclusive and 
independent models from each other: 
 

ttyRW ε=Δ: , 

tttt yyWN εβ +=Δ −1: , 
          tt ηαβ += . 
 

The Gibbs sampler for the Bayesian analysis of the STUR model is 
presented in appendix. The logarithms of the Bayes factor in favor of random 
walk computed by Newton-Raftery for the stock and indexes returns are given 
in table 1. Table 2 contains logs of Bayes factor in favor of random walk for 
weekly exchange rates. In order to provide necessary level of accuracy of 
Newton – Raftery estimator, we simulated 500000 draws. Both tables also show 
the ranking obtained using this approximation.  
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Table 1. Decimal logs of Bayes factor in favor of random walk, approximated by 
Newton – Raftery estimator for indexes WIG , WIG20, MIDWIG, TECHWIG  
and for stock returns.  

 

Random walk  STUR with WN  
Weekly returns 

 Rank ( )RWRWB10log Rank ( )RWWNB10log  

WIG 1 0.0000 2 95.175 
WIG20 1 0.0000 2 55.668 

MIDWIG 1 0.0000 2 95.434 
TECHWIG 1 0.0000 2 21.697 
AMATOR 1 0.0000 2 11.127 

BRE 1 0.0000 2 18.424 
BZWBK 1 0.0000 2 18.515 
DEBICA 1 0.0000 2 26.371 

HANDLOWY 1 0.0000 2 35.224 
MIESZKO 2 0.0000 1 -2.098 

MILLENNIUM 2 0.0000 1 -3.047 
OPTIMUS 2 0.0000 1 -12.658 

PROCHNIK 1 0.0000 2 1.226 
TPSA 1 0.0000 2 8.569 

WAWEL 1 0.0000 2 14.587    

  Notes: Column headed Rank contains the rank of the respective  
models according to Bayes factor. 

 
 The results in tables 1 and 2 show that there is no substantial evidence for 
the presence of stochastic unit root. Notice that only for the three stock returns, 
namely MIESZKO. MILLENNIUM and OPTIMUS, Bayes factor supports 
STUR model over random walk. The results in table 2 suggest that is poor 
evidence of STUR to weekly exchange rate returns. After estimating the STUR 
model, it turns out that random unit root model is not very popular for selected 
financial series. 
 In order to examine autoregressive behavior of random parameter tβ , we 
have to analyze posterior distribution of 1φ  parameter. The posterior quantile 
information and other characteristics are summarized in table 3. In the case of 
these three series there is no evidence, that random parameter follows 
autoregressive process. 
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Table 2. Decimal logs of Bayes factor in favor of random walk. approximated by 
Newton – Raftery estimator for exchange rates: Australian dollar (AUD), 
Canadian dollar (CAD), Swiss franc (CHF), Czech koruna (CZK), Danish 
crone (DKK), Euro (EUR), Pound sterling (GBP), Japanese yen (JPY), and 
US dollar (USD). 

 

Random walk STUR with WN  
Weekly returns

 Rank ( )RWRWB10log Rank ( )RWWNB10log  

AUD 1 0.0000 2 16.2361 
CAD 1 0.0000 2 15.9253 
CHF 1 0.0000 2 20.5405 
CZK 1 0.0000 2 40.8721 
DKK 1 0.0000 2 8.1587 

EUR 1 0.0000 2 29.9665 

GBP 1 0.0000 2 37.9542 

JPY 1 0.0000 2 16.2075 

USD 1 0.0000 2 26.2151 

Notes: Column headed Rank contains the rank of the respective  
models according to Bayes factor. 

 

Table 3. Posterior summaries for autoregression parameter φ1 calculated for MIESZKO, 
MILLENNIUM and OPTIMUS 

 

 Posterior quantile  Posterior 

Series 0.0025 0.500 0.975 ( )yP Δ> |01φ  Mean Standard 
deviation 

MIESZKO -0.186 0.020 0.221 0.578 0.019 0.104 
MILLENNIUM -0.300 -0.105 0.090 0.141 -0.105 0.099 

OPTIMUS -0.124 0.023 0.174 0.618 0.023 0.076 
 

 Table 4 presents the posterior means and standard deviations (in 
parenthesis) for STUR parameters α, ω2 and σ2, calculated for MIESZKO, 
MILLENNIUM and OPTIMUS, where random parameter follows iid.  
 
Table 4. Posterior means and standard deviations in (parentheses) of the coefficient 

estimates of STUR models with random parameter which follows iid. 
process. 

 

 Parameters 
Series α ω2 σ2

MIESZKO -0.0005 
(0.0026) 

0.0012 
(0.0002) 

0.0022 
(0.0005) 

MILLENNIUM 0.0034 
(0.1425) 

0.0018 
(0.0003) 

0.0021 
(0.0005) 

OPTIMUS 0.0021 
(0.0847) 

0.0009 
(0.0001) 

0.0019 
(0.0005) 
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4. Conclusion 
 

The paper presents a Bayesian estimation of the stochastic unit root model, 
where random parameter follows white noise or first-order autoregressive 
process. The results set out in tables 1 and 2 demonstrate that the STUR model 
does not improve upon a random walk model, either for weekly returns on stock 
or exchange rates. Only three of twenty four series exhibit random unit root 
behavior.  
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Appendix 
 

The Gibbs sampler and posterior densities for STUR model 
 
 The Gibbs sampler is a Markov chain Monte Carlo method for drawing 
from a joint posterior distribution by sampling from the conditional distribution.  
(Gelman, Carlin, Stern and Rubin, 1997). It consists of sampling random 
variates from Markov chain, such that its stationary distribution is the posterior 
distribution of the parameter of interest. For our purpose, STUR model is 
represented by equations (2.3)-(2.4). To apply this approach we need all 
conditional posterior distributions, given appropriate prior distribution. By 
assuming prior independence and standard distributions (Normal and Inverse 
Gamma) for all unknown parameters, the joint prior distribution is given by:  

 
( ) ( ) ( ) ( ) ( )22

2
11

22
1

2 ,|,|,|,|
11

bafbafffp GamInvGamInvNN ωσσμφσμαθ φφαα −−∝ . 
 (A.1) 

 Having defined joint prior distribution, all conditional posterior distributions 
have Inverse Chi-square or Normal distribution. Due to standard form of all 
conditionals it is very easy to sample from posterior distribution, because we 
can draw directly from Inverse Chi-square and Normal distribution. Applying 
Bayes theorem we can derive following  conditional posterior distributions: 
 

 ( ) ( )( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= +

∑ +−−−

−
=

−

2

1
2

2
11

2 2

2

2
2

01
2 ,2|,,,| aT

b

Inv

T

t
tt

aTfp
αβφαβ

χ ωββφαω , (A.2) 

 

 ( ) ( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=Δ +

+∑ −Δ

−−
=

−

1

1
1

2
1

2 2

2

1
2

01
2 ,2|,,,| aT

byy

Inv

T

t
ttt

aTfyyp
β

χ ωββσ , (A.3) 
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t
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fp , (A.4) 
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 where ( )2,|2 sxf Inv νχ−  means scaled Inverse Chi-square distributions with 

 degrees of freedom and scale 0>s . Due to stationarity of random 0>v
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process tβ , conditional posterior distribution of autoregression coefficient is 
truncated to stationary region. The full conditional density for tβ  at time t  is 
Normal and can be written as: 
  

( ) ( ) ( )[ ]
( ) ( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞=

−

−+−

++++
Δ+++−

+−−

2

11
1

111 22
1

22
1

22
1

2
1

2
111

2
1

2

,|,,,,|
t

tttt

yy
yy

tNttttt fyyp
ωφσ

σω
ωφσ

ωββφφασβββθβ ⎜
⎝
⎛Δ

−
2

1t

   (A.6) 
for   1...,,1 −= Tt
and for the last observation Tt =  
 

 ( ) ( )[ ] ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
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−−
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1

222
1

22
1

2
11

2

,|,,,|
tt

ttt

yy
yy

tNtttt fyyp
ωσ
σω

ωσ
ωαβφασββθβ  . (A.7) 

 
 These conditionals are similar to conditional posterior distributions derived 
by Jostova and Philipov (2005) for simple regression linear model with random 
parameter. Their model has been used to describe the evolution of stochastic 
betas for US industry portfolios.  


