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1. Introduction 
 

A standard way to model macroeconomic and finance series is a fixed-
coefficient model as ARIMA model, for example, presented by Box and Jenkins 
(1976). Most popular way of modeling is using I(1) representation of stock 
prices via a random walk model. It appears however that, recent empirical test 
results (Granger, Swanson (1997); Sollis at al. (2000)) suggest that macroeco-
nomic and financial time series are often processes that have a root that is not 
constant, but is stochastic. The stochastic unit root processes (STUR) are non-
stationary and do not become stationary after taking differences of any order. It 
can be shown that the process that has an exact unit root, also has stochastic 
one.  

This class of processes was considered in the articles by Leybourne, 
McCabe, Mills (1996), Leybourne, McCabe, Tremayne (1996) and Granger,  
Swanson (1997). The models describing stochastic unit root processes belong to 
a wide class of time-varying parameters models and their state space representa-
tion can be easily written.  

The paper is organized as follows: sections 2 and 3 present the model and 
its properties, the fourth part includes some useful information about sample 
properties of ML estimator. In the fifth part the estimated STUR models for the 
returns of index  WIG20 are shown. Conclusions close the paper in section six. 
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2. The model and ML estimation 
 

One of possible representations of the STUR process (stochastic unit roots), 
is the following 
 
 tttt yy εα += −1 , (1) 
 
where: 
 tt δαα += 0 , 
 00 =δ , 
 ttt ηρδδ += −1 , (2) 
 

and also 1|| ≤ρ . Stochastic processes  and  are 
assumed to be independent.  

),0(~ 2σε Nt ),0(~ 2ωη Nt

For 10 =α  and ,  is random walk process. For 02 =ω ty 10 =α  and 
, we have a process with a unit root in mean, called a stochastic unit root 

process.  
02 >ω

Model (1)–(2) may be written as follows: 
 

 tttt yy εδ +=Δ −1 , (3)
 ttt ηρδδ += −1 , (4) 
 

where  denotes an observed process at time t. Here ty tε  and tη  are white 
noise processes having zero mean and respective variances  and . 
In addition 

2σ 2ω
tε  is independent of tη . Equation (3) can be rewritten in an 

equivalent form, i.e.: 
 
 ( ) tttt yy εδ ++= −11 . (5) 
 

When 0=ρ  and  then parameter 02 =ω tδ  is zero for all t and  is a standard 
random walk process.  

ty

The state space representation of the above model is straightforward. The 
Kalman filter can be obviously used for its estimation. Assuming normality, the 
state space model can be written as (Harvey (1989); Hamilton (1994)): 
 

 , (6) tttt wHz += ξ'

 ttt vF += −1ξξ . (7) 
 
In the state space representation, equation (6) is called the observation equation, 
and (7) is the state equation. Thus,  is a tz ( )1×n  vector of observations at time 
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t , tξ  is a state vector of dimension ( )1×r . Furthermore,  is a  obser-

vation matrix, F is a 

'
tH ( rn× )

)( rr ×  transition matrix. The disturbances,  and  are 
assumed to be mutually and serially uncorrelated, i.e.: 

tw tv

 

   and  , ( )
⎩
⎨
⎧

≠
=

=
τ
τ

τ tdla
tdlaR

wwE t 0
' ( )

⎩
⎨
⎧

≠
=

=
τ
τ

τ tdla
tdlaQ

vvE t 0
'

 
where  R and Q are (  and )nn× ( )rr ×  matrices, respectively.  
Let denote expectation of a state vector 1

ˆ
−tξ tξ  conditional on all information 

available at time , and  is a mean squared error matrix: 1−t 1−tW
 

 ( )( )[ ]'ˆˆ
11111 −−−−− −−= ttttt EW ξξξξ . (8) 

 

The Kalman filter equations for updating from time 1−t   to time  are: t
 

  11
ˆˆ
−− = ttt Fξξ , (9) 

 ( )( )[ ] QFFWEW ttttttttt +=−−= −−−− ''ˆˆ
1111 ξξξξ . (10) 

 1
'

1
ˆˆ −− = ttttt Hz ξ   (11) 

 1ˆ −−= tttt zzu  (12) 

 ( ) RHWHuuEK ttttttt +== −1
'' . (13) 

 ( )1
'1

11
ˆˆˆ

−
−

−− −+= ttttttttttt HzKHW ξξξ , (14) 

 1
'1'

11 −
−

−− −= tttttttttt WHKHWWW . (15) 
 

For equations (3)–(4), the state space model depends upon unknown pa-
rameters ( )22 ,, ωσρθ = . In this case, θ  can be estimated by the maximum 
likelihood method, which is usually implemented in the filtering algorithm. The 
exact loglikelihood is easily derived from the Kalman filter. For observation t  it  
is given by: 
 

( ) ttttt uWuWnL 1'
2
1ln

2
12ln

2
ln −−−−= π    (16) 

 

Estimators of θ  are obtained numerically by maximising the expression 

. ∑
=

=
T

t
tLL

1
ln
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3. Testing for the stochastic unit roots 
 

Leybourne, McCabe and Tremayne (1996) have proposed a testing 
procedure (LMT hereafter), where under the alternative the stochastic 
unit root is assumed (see also Leybourne. McCabe and Mills (1996)). 
Hypotheses in the LMT test consider the variance  characteristics in 
equation (4). The null is , what means the random walk proc-
ess or ARIMA(p,1,0), while the alternative is as follows  

2ω
0: 2

0 =ωH
.0: 2

1 >ωH
To avoid the influence of the deterministic trend and the autocorrela-

tion, the model can include the linear or quadratic time trend, and the 
autoregressive lags of the dependent variable, so it takes the following 
form: 
 

 , (17) tttt yy εα += −
*

1
*

 
where 
 

 , (18) ∑
=

−−−=
p

t
tittt yPyy

1
1

* ϕ

 

where  means a deterministic component, for example the trend: tP
2/)1(1 +++= tttP t θγβ  or tP t γβ +=2 . The autoregressive part in (18) is 

stationary and its role is similar to the augmentation in the Augmented 
Dickey Fuller test. 

If in  11H || <ρ , then Z statistics is computed in the following way: 
1. estimating the equation (19) using OLS 

 . (19) ∑
=

− +Δ+Δ=Δ
p

i
tititt yPy

1

εϕ

2. computing the statistics: 
 

 (∑ ∑
=

−

=

−−−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

T

t
t

t

j
jTZ

1

22

2
1

1

122
3

σεεκσ ), (20) 

 
where: 

∑
=

−=
T

t
tT

1

212 εσ  and . ( )∑
=

− −=
T

t
tT

1

22212 σεκ

Choosing one of the trend model  or  we denote the respective 
statistics  and  Examining the effect of overfitting, Leybourne, 

tP1 tP2

1Z 2Z
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McCabe and Mills (1996) and Leybourne, McCabe and Tremayne 
(1996), showed that presented statistics are mostly robust for fitting re-
dundant lags in . Moreover, when tyΔ tε̂  are GARCH process, it appears 
that conditional heteroskedasticity in the residuals does not cause a sub-
stantial power reduction. However it does not hold when residuals are 
IGARCH process. (Granger, Swanson (1997)). The empirical critical values 
of Z for various values of T are reported in Table 1. 

 
Table 1. The critical values for the LMT statistics 

 

T 01,0=p  05,0=p 1,0=p  
50 0,349 0,215 0,161 

100 0,320 0,192 0,142 
250 0,289 0,168 0,122 
500 0,278 0,161 0,114 
1000 0,261 0,149 0,104 

 

 Source: Leybourne, McCabe, Tremayne (1996)  
 and Granger, Swanson (1997). 

 
 
4. Sample properties of the ML estimator 

 
This section presents sample properties of maximum likelihood estimator 

based on Monte Carlo simulation. In order to examine properties 1000 
realisations of the STUR process were generated (equations (3)–(4)), then esti-
mates of θ  were obtained numerically by maximising the likelihood function. 
The data used for simulations contained 100, 250 and 500 obserwations. For 
every parameter, the point estimate of the variation coefficient has been com-
puted. Variation coefficient was calculated as follows: ( ) ( )θθ ˆ/ˆ ED , where ( )θ̂D  
is standard deviation and ( )θ̂E  is a mean of the sample estimates. The detailed 
outcomes are presented in Table 2. Moreover the bias of the sample estimator 
has been computed as ( )[ ] 1/ˆ −θθE , where θ  denotes a vector of true values of 
parameters. 

Analyzing results presented in Table 2, we can claim that the maximum 
likelihood estimation technique gives satisfactory estimates, esspecially for 
large samples; T = 500. The estimates of variance of the disturbances in obser-
vation equation σ2 are the most accurate.  

The estimates of variance of the state equation ω2 are the most imprecise. 
They are much more inaccurate than for other parameters, especially in the case 
of small sample; T = 100. Numerical value of the parameter ω2 has essential 
impact on accuracy of other estimates. The comparison of computed values 
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shows that the less numerical value of ω2, the more biase and variance of the 
estimates (see Table 2).  

 
 

5. STUR models for WIG20 (Polish stock index) 
 

In the presented paper, daily and weekly returns on Polish stock index 
WIG20 listed on the WSE were considered to be examined whether they have 
the stochastic unit roots or not. The observed period contains respectively 2421 
daily observations from July 1994 till March 2004 and 380 weekly observa-
tions, in the same period of the time. 

Concerning daily data we identified stochastic unit root with Z statistics 
equal to 0.3085, while for weekly returns Z statistics was 0,219. These test val-
ues suggest that both – daily and weekly – returns of WIG20 have a stochastic 
unit root. The results of the estimation are given in Table 3. 
 
Table 3. The results of estimation STUR models for WIG20. 
 

Daily returns of WIG20 Weekly returns of Wig20 
ω2 = 3.15236E–04 
σ2 = 197.445 

ω2 = 1.53454E–06 
σ2 = 2.148 

 
The t-statistics values for the autoregressive coefficients suggest, that they are 
not significantly different from zero at any conventional significance level and 
therefore ρ  is omitted in the fitted model. The stochastic parameter 

tt δαα += 0  estimates, for 10 =α  are shown in Fig. 1 and 2 respectively. The 
results are similar to those presented in Sollis at al. (2000) for chosen stock 
indices. 
 

0.85

0.9

0.95

1

1.05

1.1

1.15

1 222 443 664 885 1106 1327 1548 1769 1990 2211

 

 
 
 
 
 
 
 
 
 
 
 
 
  
Fig. 1. The stochastic parameter  tt δα +=1 estimates for daily returns of Wig20 

Source: Authors’ computations.  
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Fig. 2. The stochastic parameter  tt δα +=1 estimates for the weekly returns of Wig20  

Source: Authors’ calculations. 
 

The most important output results are those concerning variances of state 
and observation equations. Analyzing the results of estimation we can state that 
the variability of daily returns is greater than observed for weekly returns. De-
spite the number of  the observations it is consistent with the empirical facts. 
The daily returns are – in normal market conditions – usually more volatile that 
returns observed in longer periods. The figures show that the analyzed models 
cover to some extent clustering in the variance observed in daily as well as in 
weekly rates of return on WIG20. 
 
 
6. Conclusions 
 

We analyzed a simple form of stochastic unit roots representation. The 
model belongs to the time-varying parameters class of models. We found that 
the state space form is most convenient for its formulation. Consequently we 
used the Kalman filter to estimate it. We found that some financial time series – 
represented here by WIG20 –  are better characterized by the stochastic unit 
root model than by the exact unit root process.  

Finding of the stochastic unit roots in the economic time series extents our 
perception of real processes and shows the mechanism of their  changes. It also 
gives a useful information of the limits of the standard unit roots tests. 
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Table 2. ML estimates obtained by Monte Carlo simulation (1000 replications, sample length: 100, 250 i 500).  Variation coefficient is  

calculated as follows: ( ) ( )θθ ˆ/ˆ ED ,  (standard text) and bias of sample estimator has been computed as ( )[ ] 1/ˆ −θθE  (italic text). 
 

 100=T  250=T  500=T   100=T  250=T  500=T  
 

2,0=ρ  
01,02 =ω  

12 =σ  
 

 
2.243; -0.085 

 
0.835; 0.140 

 
0.237;-0.049 

 
1.332; -0.103 

 
0.377; -0.024 

 
0.155; 0.004 

 
0.620; -0.063 

 
0.200; -0.017 

 
0.123; 0.028 

 
2,0=ρ  

001,02 =ω  
12 =σ  

 

 
2.775;-0.056 

 
1.614; 4.972 
 
0.188; -0.137 

 

 
2.635; -0.112 

 
1.395; 0.703 

 
0.130; -0.043 

 
1.716; 0.021 

 
0.816; 0.086 

 
0.097; 0.012 

 
6,0=ρ  

01,02 =ω  
12 =σ  

 

 
0.606; -0.109 

 
0.791; 0.111 

 
0.241; -0.077 

 
0.283; -0.039 

 
0.320; 0.019 

 
0.168; -0.000 

 
0.108; -0.026 

 
0.174; 0.044 

 
0.138; 0.015 

 
6,0=ρ  

001,02 =ω  
12 =σ  

 

 
0.764; -0.115 

 
2.035; 3.917 

 
0.1869; -0.130 

 
0.616; -0.089 

 
1.229; 0.467 

 
0.126; -0.042 

 
0.410; -0.045 

 
0.685; 0.066 

 
0.095; -0.017 

 
9,0=ρ  

01,02 =ω  

12 =σ  
 

 
0.222; -0.096 

 
0.799; 0.319 

 
0.335; -0.031 

 
0.054; -0.044 

 
0.461; 0.415 

 
0.289; -0.012 

 
0.031; -0.033 

 
0.329; 0.512 

 
0.213; -0.007 

 
9,0=ρ  

001,02 =ω  

12 =σ  
 

 
0.321; -0.123 

 
2.191; 1.698 

 
0.198; -0.134 

 
0.164; -0.049 

 
1.118; 0.250 

 
0.130; -0.050 

 
0.063; -0.018 

 
0.293; 0.055 

 
0.109; -0.028 

 

Source: Authors’ calculations. 
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