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Heteroskedastic Cointegration 
 
 
1. Introduction 
 
 Conditional heteroskedasticity has been commonly found in macroeco-
nomic and financial time series (Bollerslev, Chou, Kroner (1992), as well as 
Bera, Higgins (1993)). It is known that many financial prices and economic 
indicators are volatile and the constant conditional variance assumption is im-
practical. Studies conducted in the eighties proved that many macromodels 
based on time series have less stable variance of the innovations than it was 
assumed (Welfe (1998)). It often appeared in the case of financial models, and it 
could be explained through the economic theory.  The problem of volatile con-
ditional variance can be solved by means of the ARCH model or its extensions.
 The notion of cointegration introduced by Granger (1981) and developed by 
Engle and Granger (1987) became popular due to two seemingly contradictory 
facts: (1) economic time series typically appear to posses unit roots (2)  the eco-
nomic theory often suggests existence of equilibrium or a long run relationship 
between variables. In the classical model of cointegration (model E-G) it is 
assumed that the processes , while the errors from the long run 
relationship  are . Hansen (1992) noticed that the model of cointegration 
formulated by Engle and Granger is sufficiently general to cover all nonstation-
ary economic models. The errors of cointegration regression  differ stochasti-
cally from the regressors, which have a fixed mean and a bounded variance. 
One might expect that as the regressors increase, the residual variance would 
also increase. We might also expect that the variance of the error process 
changes over time due to changing factors. Summing up  we can expect that the 
error variance will not be stationary over time.  

)(~, Ixy tt 1

tu )0(I
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 The notion of the heteroskedastic cointegration model (HCI) was proposed 
by Hansen (1992). He reduced assumptions in the classical cointegration model 
E-G. Here we have only assumptions concerning the cointegration equation:  
(1) , (2) error )(~ 1Ixt ( )tw  of the equation is a bi-integrated process (BI). As-
sumption (2) does not contradict the classical assumption, because a BI process 
is a  process. )(0I
 Hansen in his papers has given two justifications for the HCI model:  
1. Both  and  are characterized by variance which grows at the same rate.  tx tw
2. In economic research the time-varying parameter (TVP) model are used 

more and more frequently. For instance, consider the linear regression model 
with a time-varying parameter  

 tttt uxy += β  (1)  
 tt v+= ββ  (2) 

The model described by equations (1)-(2) can be written in an equivalent 
form, as: 

 ttttt uxvxy ++= β  (3) 
If time series , then model (3) becomes HCI model, where  is  
a BI process. Model (3) suggests that the residuals will be proportional to the 
regressors i.e. big disturbances will appear more often when the process  
achieves big values. 

)(~ 1Ixt tt xv

tx

The aim of this paper is to present the properties of the BI process and to 
show the heteroskedastic cointegration model.  

 
 

2. The bi-integrated process 
 
Hansen (1992) introduced the notion of the bi-integrated process.  
The process  generated by tw ttt uw σ= , where )(~ 1Itσ  and  is 
called a bi-integrated (BI) process.  

)(~ 0Iut

 The process  is understood as a „stationary part” of process , whereas 

the process 
tu tw

tσ  (more precisely ) – as a „variance part”. 2
tσ

Let 
 ttt uw σ= ,  (4) 
where ttt v+= −1σσ , and ( )1,0~ δNIDut , ( )2,0~ δNIDvt . Note that 
  (5) ( ) 0=twE
 ( ) ( ) tuEw ttt

2
2

2
1

22var δδσ == ,  if ( ) 0=tt vu ,cov  (6) 
 ( ) ( ) 0== −−− ststttstt uuEww σσcov  (7) 
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Thus the variance of the BI process, similarly to the variance process tσ  is  
a function of time and autocorrelation does not exist. Moreover, the process  
frequently tends to cross its mean. Individual graphs of BI process realization 
resemble the GARCH process. Analysis of the autocorrelation function (ACF) 
and the partial autocorrelation function (PACF) of the BI process as well as 
various GARCH processes led us to the following conclusions: 

tw

1. the values of the ACF and PACF coefficients for the BI process are statisti-
cally insignificant, 

2. the values of the ACF coefficients for the squares are statistically signifi-
cant. Moreover, they disappear very slowly (slower than for the type of 
GARCH process, for which the ACF dies out after several/a few dozen lags 
depending on the distance of the sum of the estimated parameters to one). 
This shows that the processes have a long memory variance process. Thus 
BI processes resemble IGARCH processes, 

3. the values of the PACF coefficients for the squares of observations are sta-
tistically significant. Their disappearing occurs although we can not affirm 
that all the coefficients values after several/a few dozen lags are statistically 
insignificant, 

4. in the boundary cases distinguishing BI and GARCH processes with the 
sum of the parameter close to one by means of ACF and PACF functions is 
not possible. 

To illustrate the hypothetical realization of the BI, GARCH and ARCH  proc-
esses are shown in the Fig. 1. The data generating process (DGP) for each case 
has the following form:  
BI process  
 ttt uw σ= ,  (8) 
 ttt v+= −1σσ ,  ( )1,0~, NIDvu tt , (9) 
GARCH process  
 ( )tttt hNyy ,~..., 021 −−ε ,      (10) 

 , (11) 2
11 1089010 −− ++= ttt hh ε...

ARCH process  
 ( )tttt hNyy ,~..., 021 −−ε ,      (12) 

 . (13) 2
4

2
3

2
2

2
1 05020304010 −−−− ++++= ttttth εεεε .....

 
In Fig. 1 histograms and the values of the ACF and PACF for the squares, re-
spectively are shown. 
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Fig. 1. Hypothetical realizations of BI, GARCH, ARCH processes and their profiles 
 
 The BI process is an explosive process. It is due to the variance of the proc-
ess which is characterized by a stable partial autocorrelation function that does 
not die out. The distribution of this process  is not close to the normal distribu-
tion. 
 In order to describe statistical properties of the BI process the simulation 
experiment has been made. It consisted in generating processes: BI, ARCH, 
GARCH described by the equations (8)–(13). All simulations were based on 
100 and 300 replications, where the data generating process had 1000 and 1300 
observations. Table 1. contains the results of simulations for the time series 
whose length are 1000 observations and 300 replications. The conclusions from 
the simulations based on the data generating series which have 1300 observa-
tions and 100 replications do not differ from the results shown in Table 1.  
 
Table 1. Statistic properties of  processes: GARCH, ARCH, BI (300 replications) 
 

 Mean Standard deviation  
 min max mean min max mean 

GARCH -0.2840 0.4303 -0.0007 1.9665 6.3936 3.0704 
ARCH -0.2463 0.2772 -0.0015 0.6074 6.3549 1.1127 

BI -3.4503 2.4904 -0.0068 5.4636 72.7990 23.4574 
 Skewness  Kurtosis  
 min max mean min max mean 

GARCH -1.0083 0.7226 0.0059 2.8884 14.5002 4.8383 
ARCH -11.7519 12.7833 -0.0073 4.2094 359.1711 23.3872 

BI -0.7728 0.7752 0.0010 2.8709 14.6710 5.8697 
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 The simulation results showed that the mean for all the processes tends to 
zero while the variance of the BI process has high values (keeps the higher 
value than variance for GARCH and ARCH processes). The BI process turned 
out to be more leptokurtic than the GARCH process, however less leptokurtic 
than the ARCH process (heightened kurtosis). One can observe the occurrence 
of havy tails (see: Fig. 1). 
 Beside the results shown above, we tested the presence of the autocorrela-
tion by means of the Box-Ljung test, the ARCH effect by means of  the Engle 
test, the unit roots by means of the DF test and linearity by means of the 
McLeod-Li test for examined processes. The results showed that it was not pos-
sible to distinguish these processes. 
 Analyzing the statistical properties, the question concerning the comparison 
of bi-integrated models with bilinear models (BL) arises. The latter are similar 
to GARCH models which are characterized by concentration of variance and in 
some cases (a subdiagonal process) have higher kurtosis with relation to 
GARCH models (compare Bruzda (2003)). Since the autocorrelation research 
for squares observations1 for BL and GARCH models do not give us any possi-
bility to distinguish between them (compare Bruzda (2003)), similarly to BI and 
GARCH models, we conclude that also for BL and BI models the research 
autocorrelation for squares observations we are not able to distinguish among 
these processes.  
 The basic characteristic distinguishing the BI process from the GARCH or 
BL process is the value of variance and, to a small extent, analysis of the ACF 
for squares. The BI model has a very big variance (bigger than GARCH or BL) 
and frequent changeability. It can be used to describe relatively calm processes, 
which at some moment „explode” (with their variance considerably rising; the 
variance depends on the process tσ  which is ( )1I ). 
 
  
3. Heteroskedastic cointegration 
 
 Hansen (1992) gave the following definition of the heteroskedastic cointe-
gration model: 
Consider the linear regression model: 
  (12)  ttt wxy ++= '

10 ββ
where  is a regressor vector )(~ 1Ixt 1×n  
  (13) ttt uxx 31 += −

The error  is a term bi-integrated process defined earlier 
 

tw

ttt uw 1σ= , 
where )(~ 1Itσ  is a scale process (14) 

                                                      
1 For example Engle or McLeod-Li tests. 



© C
op

yr
igh

t b
y T

he
 N

ico
lau

s C
op

er
nic

us
 U

niv
er

sit
y S

cie
nt

ifi
c P

ub
lis

hin
g H

ou
se

Joanna Górka, Joanna Stempińska  218

 ttt u21 += −σσ  (15) 
The initial values  and 0x 0σ  are random variables with a finite absolute expec-
tation.  
The model given by the equation (12)–(15) is called a model of hetroskedastic 
cointegration  – HCI 
 Note that 
 ( ) tCxt 1≈var ,   ∞<< 10 C , 
 ( ) tCwt 2≈var ,  ∞<< 20 C . 
Thus ,  have the same stochastic order. This model differs from the stan-
dard  E-G cointegration model, as the variance of the regression errors is time-
varying. Although they have variances of the same stochastic order, the series 
behave entirely different. Process , shows no tendency to return either to 
mean or to any particular value, while process  is running around its mean 
(crosses its mean) which is equal to zero (equation (5)). For visual distinction 
between CI and HCI processes, the individual realization of these processes has 
been shown in Fig. 2.  

tx tw

tx

tw

 

 
Fig.. 2. The individual realizations of CI and HCI processes 
 
 The CI processes have the same long development path, while HCI proc-
esses have the same feature, but with reference to the mean value. Weakening 
the assumption of the E-G model permits finding the long run relationship be-
tween two processes which have different size and frequency changeability.  
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 In order to compare the CI and HCI models the Monte Carlo simulation was 
carried out. The generating models were the following:   
HCI model 
 , (16)  ttt wxy ++= 10 ββ
where  
 ,  ttt uxx 31 += −

 ttt uw 1σ= , 
 ttt u21 += −σσ ,  
 ( )1,0~,, 321 NIDuuu ttt , 
CI model 
 , (17) ttt uxy 110 ++= ββ
where   
 ,  ttt uxx 21 += −

  . ( )1,0~, 21 NIDuu tt

In each case 100 series of 1000 observations were generated. Then the parame-
ters for the individual models by means of OLS2 were estimated. In both cases 
estimated the values of all parameters  are statistically significant. 
The determination coefficient  for CI model has high values while its size for 
the HCI model depends on  estimated values of parameter 1β  (its value rises 
with a rise of 1β – see: Table 2). 
 
Table 2. The values of determination coefficient for HCI and CI models  
 

  HCI CI 

1β  1β  min max mean min max mean 

10 0.5 0.0003 0.6596 0.1253 0.8033 0.9944 0.9596 
10 1.0 0.0092 0.9307 0.3167 0.9491 0.9999 0.9885 
10 1.5 0.0205 0.9096 0.4281 0.9816 0.9993 0.9953 

 
 
Residuals from a CI model have normal distribution, neither autocorrelation nor 
ARCH effect occur. Residuals from the HCI model, similarly to the CI model, 
are integrated of orders zero. However they are not normally distributed, the 
ARCH effect occurs and  sometimes autocorrelation (of higher order). 
 
 
 
 

                                                      
2 This estimation method for HCI model  is used by Hansen (1992). 
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4. Conclusions 
 
 Modelling the economic processes using the cointegration is useful, because 
essential connections between nonstationary time series can be found. Hansen’s 
work on the heteroskedastic cointegration showed that the statistical theory 
developed for the standard cointegration model can also be applied in the case 
of a wider class of models. In a standard cointegration model the regressor dif-
fers stochastically from residuals in two aspects: (1) the variance of regressors 
grows linearly in time, (2) the regressors have stochastic trend. In the hetroske-
dastic cointegration model, the regressors differ stochastically from residuals 
only with respect to the properties of the trend. 
 The HCI model allows to find the long run equilibrium between series with 
various changeability, with the variance growing in time and not necessarily, 
with the same properties of the trend function. 
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