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1. Introduction 

 
Spectral analysis, by which we understand Fourier analysis, makes it possi-

ble to decompose a process into constituent sinusoids of different frequencies. 
Another way to think of Fourier analysis is as a technique for transforming our 
view of the process from a time-based one to a frequency-based one. However, 
Fourier analysis has a serious drawback, which consists in loosing time infor-
mation. When looking at a Fourier transform of a process, it is impossible to tell 
when a particular event took place. If characteristics of a signal do not change 
much over time – that is, if it is a stationary signal – this drawback is not an 
obstacle in a precise analysis of the process. The situation changes dramatically 
when the signal contains a trend or some transitory characteristics. In an effort 
to correct deficiencies of Fourier analysis several solutions were proposed. One 
of them is to adapt the Fourier transform to analyse only a small part of the sig-
nal at a time. This adaptation is called Short-Time or Windowed Fourier Trans-
form (STFT or WFT). This transform enables us to view our process in two 
domains simultaneously, being a sort of compromise between time- and fre-
quency-based analysis. However, this approach has a drawback connected with 
the same size of a time window for all frequencies, while many economic proc-
esses require a more flexible approach – one where we can vary the window 
size as to analyse long-term movements with larger windows and short-term 
fluctuations with shorter windows. 

Wavelet analysis represents the next logical step in frequency-domain 
analyses and is a kind of windowing technique with variable-sized regions.  
A wavelet is – in simplest words – a “small wave”, or – being more precise –  
                                            

* The author acknowledges the support of the Polish Foundation for Science under  
a scholarship for young scientists in 2004. 
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a waveform of effectively limited duration and an average value of zero. Com-
paring sine waves, which are the basis of Fourier analysis, with wavelets one 
should notice that sinusoids extend from ∞−  to ∞+  and are regular, while 
wavelets tend to be asymmetric and irregular (see: Fig. 1). 
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Fig. 1. Sinusoid and db50 (Daubechies 50) wavelet 

Wavelet analysis consists in breaking up a signal into shifted and scaled 
versions of the original (or mother) wavelet. Several filtering methods have 
been proposed to extract components in a time series, ranging from simple mov-
ing averages and least square method to more sophisticated spectral methods, 
Kalman filters or neural network filters. The main advantage of wavelet analysis 
is a precise description of the local features of a signal. In contrast to WFT, 
which is not able to detect events taking place in the range of a time window, 
wavelet analysis becomes a tool for analysis of non-stationary processes or 
processes with transient characteristics, which are the results of changing pa-
rameters and (or) the non-linearity of underlying mechanisms. This kind of sig-
nal processing technique has found use in such differing disciplines as commu-
nication, geophysics or medicine, but starts also to find its place in modern fi-
nance and economics. This analysis is in some cases complementary to other 
existing techniques like correlation and spectral analysis, but there are also au-
thors who believe that wavelet filtering provides insight into the dynamics of 
economic time series beyond that of current methodology and is capable of  
revealing aspects of data that other time series techniques miss, aspects like 
breakdown points, discontinuities in higher derivatives, and self-similarity. 
 Wavelet analysis produces a time-scale view of a signal. The notion of  
a scale replaces the notion of frequency, so that higher scales correspond to the 
most “stretched” versions of wavelets. There exists a direct correspondence 
between a low scale and a high frequency and between a high scale and a low 
frequency wavelet. Thanks to the ability to adjust the scale wavelets enable us 
to see both the forest and the trees and make it possible to escape Heisenberg’s 
indeterminacy principle – the law that says that one cannot be simultaneously 
precise in the time and the frequency domain.  

Wavelet analysis is a relatively new signal processing technique, though its 
mathematical underpinnings date back to the work of Joseph Fourier in the 
nineteenth century, which is the starting point for all frequency-domain analy-
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ses. The first mention of the term “wavelet” was in 1910 in a paper of Harr1. 
The theoretical concept of a wavelet in its present form and the fundamentals of 
wavelet analysis have arisen in the eighties in France and are connected mainly 
with two names: J. Morlet and Y. Meyer. Research on wavelets became interna-
tional in 1988 after finding an algorithm of the fast wavelet transform by  
S. Mallat. A great interest in applying wavelet analysis in signal processing 
dates back to that time. 
 In finance and economics wavelet analysis can be used in: 
– analysing properties of economic time series and relationships between 

them at different time-scales (in long- and short-run);  
– investigating local and global features of time series with different resolu-

tion (with low or high precision); 
– identifying structural breaks, outliers, turning points, discontinuities, and 

volatility clustering; 
– identifying seasonality and seasonal adjusting; 
– smoothing and separating trends; 
– denoising; 
– modelling dynamic of non-linear processes with the help of wavelet net-

works; 
– investigating long-memory processes; 
– identifying a fractal nature of economic processes. 

In this paper we give a brief overview of basic notions and properties un-
derpinning wavelet analysis with emphasis on discrete wavelet transforms, mul-
tiresolution analysis and scalograms. Moreover there are presented examples of 
economic applications of this technique in identifying periodic components of  
a time series, smoothing and investigating causal relationships between series 
according to different scales. So far wavelet methods have not been used exten-
sively in economic time series analysis. 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Examples of wavelets 
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1 Haar (1910), Zur Theorie der Orthogonalen Funktionensysteme, Mathematische 
Annalen, 69, 331–371. 
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2. Basic definitions and properties 
 

A basis of wavelet analysis is a wavelet transform, which – similarly to the 
Fourier transform – can be continuous or discrete. Let us consider a real-valued 
function )(⋅ψ  satisfying two basic properties 

.1)(

,0)(

2 =

=

∫
∫

∞

∞−

∞

∞−

duu

duu

ψ

ψ
 (1) 

We will refer to this function as a mother wavelet. The continuous wavelet 
transform (CWT) of function )(⋅x  is 

∫
∞
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As a result of applying the continuous wavelet transform we obtain a set of 
wavelet transform coefficients, which depend on scale λ  and time t. This set is 
an equivalent representation of function )(⋅x . 

 Let ),,,( 110 ′= −Nxxxx K  be a data vector of length . For 

 and  we define the discrete wavelet transform 
(DWT) of vector x with respect to 
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where )(, ⋅kjψ  are scaled and shifted versions of the mother wavelet, i.e.  

( )ktt jj
kj −= −− 22)( 2/

, ψψ .  (3) 

For certain types of the mother wavelet (for example for the Haar wavelet or the 
wavelet family introduced by I. Daubachies – see Figures above) the set (3) 
constitutes an orthonormal basis. DWT operates on scales, which are powers of 
2 – these are the so-called dyadic scales. Dyadic are also shifts of the form 

. Although DWT can be defined without referring to CWT, we will treat it 
as a discretisation of the continuous wavelet transform, obtained as a result of 
critical sampling of CWT. The sampling is critical in the sense, that it gives  
a minimal number of wavelet transform coefficients, which preserve all the 
information about the underlying signal. 

jk 2⋅

 The discrete wavelet transform is closely related to the so-called multireso-
lution analysis, which was introduced by Mallat in the end of the eighties. This 
analysis consists in a multiple-level representation of a signal, where at each 
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level the signal is decomposed into two components: an approximation and  
a detail.  At each consecutive level the approximation from the previous de-
composition is represented again as a sum of a subsequent approximation and  
a detail. The approximations are the high-scale, low-frequency components of 
the signal, whereas the details are the low-scale, high-frequency components. 
Proceeding in this way any square-integrable function can be represented with 
any accuracy as a sequence of details so that when the number of representation 
levels goes to infinity, the error of this approximation tends to zero.  
 Technically, a multiresolution analysis projects a function on a set of closed 
functional subspaces of consecutive approximations: 

KK 1012 −⊂⊂⊂⊂ VVVV . (4) 

Furthermore, since the subspaces are nested, one can represent  as the di-
rect sum of the coarsely approximated subspace  and its orthogonal comple-
ment : 

1−jV

jV

jW

jjj WVV ⊕=−1 , (5) 

jW  represents details of a signal apparent at the level of scale , which do not 
appeal for less precise scales. One can think of the subspaces  as different 
levels of magnification, revealing more and more detail. We presume addition-
ally that the subspaces  are self-similar, i.e. 

j2

jV

jV

0)2()( VtfVtf j
j ∈⇔∈ ,  (6) 

and invariant relative to shifts of the form . We assume also that there 
exists a function 

jk 2⋅
0V∈ϕ  such that the set };{ , Z∈nnjϕ  is an orthonormal basis 

in the subspace , where . The function jV )2(2 2/
, ntjj
nj −= −− ϕϕ ϕ  is the so-

called father wavelet (scaling function). Looking for an orthonormal basis in the 
subspace  one should define 0W

∑ −=
k

k ktgt )2(2)( ϕψ .  (7) 

Moreover we have also  

∑ −=
k

k ktht )2(2)( ϕϕ .  (8) 

Equations (7) and (8) are called scaling equations or dilation equations and de-
fine sequences  and , which are impulse responses of two filters:  }{ kg }{ kh

 
 



© C
op

yr
igh

t b
y T

he
 N

ico
lau

s C
op

er
nic

us
 U

niv
er

sit
y S

cie
nt

ifi
c P

ub
lis

hin
g H

ou
se

Joanna Bruzda 
 
188

a high-pass filter and a low-pass filter accordingly. The two filters are called 
quadrature mirror filters. Applying them to an initial signal or its approximation 
at a given resolution level we get a decomposition of the signal into an ap-
proximation (the low-pass filter) and a detail (the high-pass filter). If we denote 
by G and H the transfer functions of the quadrature mirror filters, a wavelet 
decomposition of a signal x, consisting of  elements, has the form  n2

],,,,,,[ 12 xHxGHxGHxGHGHxGxW nnn−= K . (9) 

Denoting approximations by HxA =1 ,  etc., and details by , 

,  etc., a wavelet decomposition can be depicted on the 
following diagram. 

xHA 2
2 = GxD =1

GHxD =2 xGHD 2
3 =
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Fig. 3. Multiresolution analysis 
 
Multiresolution analysis enables showing a signal as a sequence of details, go-
ing from fine to coarse. We have to add that the sequence of details (9) given in 
an opposite order constitutes the discrete wavelet transform (2). 
 One of the most useful tools in wavelet analysis is the scalogram, which is  
a counterpart of the periodogram. The energy of the discrete wavelet transform 
at level j ( is defined as )1,,1,0 −= nj K

∑
−

=
=

12

0
2
,)(

j

k kjWjE . (10) 

The scalogram of the data is the vector of energies  

))1(,),1(),0(,( 2 −nEEEAn K . (11) 

Since for vector  ),,( 1 nvvv K=

∑ =
=

n

i ivv
1

22 ,    

the scalogram of the discrete wavelet transform can be written in an equivalent 
form as  
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⎟
⎠
⎞

⎜
⎝
⎛ − 2222212

,,,,, GxGHxxGHxGHxH nn K . (12) 

If an extreme value at a high level j exists in a scalogram, it is an evidence that 
there are high frequency periodical fluctuations in the data, while if it is at a low 
level – the periodical oscillations take place for low frequencies. 
 
 
3. Examples of economic applications  
 

As we mentioned in the Introduction, wavelets are a relatively new way of 
analysing time series, but in many aspects they are a synthesis of old ideas with 
a new elegant mathematical approach and an efficient computational algorithm. 
Wavelets found use in virtually all applications that were previously based on 
Fourier analysis, but manage also to solve problems for which little progress has 
been made prior to the introduction of wavelets. They are particularly useful in 
analysing processes with deterministic or stochastic trends, varying seasonality, 
structural breaks or outliers. It is known that many economic phenomena – for 
example economic activity with business cycles – do not follow a strict perio-
dicity. Additionally economic processes have often varying structures and 
trends. All that causes that wavelet analysis seems to have great potential use-
fulness in econometrics. 

Two properties of wavelets are particularly useful in analysing economic 
time series: (i) since the base scale includes any non-stationary component, the 
data need not be detrended or differenced prior to the analysis; (ii) the non-
parametric nature of wavelets takes care of a potential non-nonlinear relation-
ship without losing information. Another advantage of wavelets consists in this, 
that economic actions and decision-making take place at different scales, i.e. 
they depend on a time horizon. Economists often emphasise the importance of 
discerning between long-run and short-run behaviour. As Ramsey and Lampart 
(1998) notice, the classics of economics (J. Hicks for example) saw the neces-
sity to distinguish more time horizons and only pedagogical regards decided 
that these two periods have been popularised. Wavelets with multiresolution 
analysis offer the possibility of going beyond this simplifying dichotomy by 
decomposing time series into several layers of orthogonal scales. The scales can 
be analysed individually and compered with other series. 

In what follows two examples of economic applications of the wavelet de-
composition are presented. In the first example the relationship between cash 
and futures markets in Poland is examined at different levels of resolution. In 
the study daily quotations of two indices during the period 17.05.1999– 
20.06.2003 are used: WIG20 from the Polish spot market and synthetic index 
FW20 from the corresponding futures market (1024 daily observations).  
A source of current data for the synthetic paper FW20 is a quotation of the fu-
tures contract FW20XX with the largest number of transactions. The aim of the 
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analysis was examination of lead-lag relations between quotations in spot and 
futures markets and answering the question: On which market does the price 
form? Prices in these two markets are contemporaneously related according to 
the cost-of-carry model in the theory of finance, in which the “fair value” of  
a futures contract is equal to the “fair value” of the underlying spot index, plus 
the cost of carrying the spot index for the duration of the contract. Empirical 
studies, however, document the existence of some correlation patterns between 
these two series, which show that futures prices lead spot prices within short 
time horizons (see for example Bruzda, Wiśniewska, 2002).  

In the second example much shorter data series of base inflation indicators 
and increases of money supply M0 were used (64 monthly observations). The 
series covered the period 01.1998–04.20032. Here also we try to answer the 
question: What is the character of the causal relationship decomposed according 
to time scales?   

After a preliminary analysis it turned out that the processes WIG20 and 
FW20 are integrated of order 1 and that there exists a long-term cointegrating 
relationship between them3, whereas the seasonally adjusted inflation indicators 
and differenced money supply measure M0 are stationary. In what follows non-
seasonally adjusted series were used. In Table 1 the estimation output for a vec-
tor error correction model for WIG20 and FW20 is included.  

 
Table 1. Estimation output for the VEC model for FW20 and WIG20 

Cointegrating equation 
09476.24920200382.120

)02710.0(
=+−

±
WIGFW  

VEC model 
 D(FW20) D(WIG20) 

Error correction  
)01959.0(

019156.0
±

−  
)01917.0(

020774.0
±

 

D(FW20(-1)) 
)07519.0(

101135.0
±

−  
)07357.0(

013362.0
±

−  

D(WIG20(-1)) 
)07729.0(

081826.0
±

 
)07562.0(

003324.0
±

−  

Const 
)88481.0(

272333.0
±

−  
)86572.0(

228742.0
±

−  

R2 0.0031 0.0016 
Source: Author’s calculations. 

According to Granger’s theory the existence of cointegration indicates  
a causal relationship at least in one direction. However in our case the direction 

                                            
2 The data were taken from electronic databases at http://www.nbp.pl and 

http://bossa.pl/notowania/daneatech/omegasupercharts. 
3 The trace statistic in the Johansen test indicates the existence of a cointegrating 

vector at the significance level α = 1%. 

http://www.nbp.pl/
http://bossa.pl/notowania/daneatech/omegasupercharts
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of the causal relationship between WIG20 and FW20 is hard to determine, be-
cause the majority of parameters in the VEC model is insignificant. Granger 
causality tests provided similar results, indicating the lack of any causal rela-
tionship in both directions with the lag length4 of 2. That is why in further 
analysis the processes have been decomposed according to different scales in  
a 6-level wavelet decomposition, where the maximal level of representation was 

. Results of the decomposition for WIG20 are given in Fig. 4 
and results of pairwise Granger causality tests between the approximations (A6) 
and the details (D1–D6) of the processes WIG20 and FW20 are included in 
Table 2. The results of Granger tests for decomposed processes are much more 
informative than initial results. It turns out that for long-term fluctuations  
(above  observations) the causal relationship runs in two directions, 
whereas for short-term movements (first and second level of detail) futures 
prices lead spot prices. The causal relationship and the flow of information in 
the short-run is from the futures market to the spot market. Additionally charts 
in Fig. 4 enable observing the quotations of WIG20 with different resolutions 
(A1–A6), where the highest level of approximation gives the best smoothing of 
the series, and the plot of continuous wavelet transform can be an indicator of  
a fractal nature of the process. It is worth noting that the wavelet decomposition 
can be also useful in forecasting the two processes, because often it is easier to 
forecast components of a time series than the whole series itself. 

101024log2 ==n

3225 =

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4. Multiresolution analysis for WIG20. Scales 1–6 approximately correspond to 

periods 2–4, 4–8, 8–16, 16–32, 32–64, 64–128 
 
 

                                            
4 Because of nonstationarity of the variables results of the Granger causality tests 

should be treated with cautious. These results are available upon request. 
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Table 2. Results of pairwise causality tests for decomposed processes WIG20 and 
FW20 

Null hypothesis F statistics p-value 
A6–FW20 does not Granger cause A6–WIG20 77.3345 0.0000 
A6–WIG20 does not Granger cause A6–FW20 84.4470 0.0000 
D6–FW20 does not Granger cause D6–WIG20 57.4774 0.0000 
D6–WIG20 does not Granger cause D6–FW20 12.2121 0.0000 
D5–FW20 does not Granger cause D5–WIG20 18.3393 0.0000 
D5–WIG20 does not Granger cause D5–FW20 7.8326 0.0004 
D4–FW20 does not Granger cause D4–WIG20 0.4063 0.6662 
D4–WIG20 does not Granger cause D4–FW20 1.1093 0.3302 
D3–FW20 does not Granger cause D3–WIG20 2.2758 0.1032 
D3–WIG20 does not Granger cause D3–FW20 6.6236 0.0014 
D2–FW20 does not Granger cause D2–WIG20 3.5203 0.0300 
D2–WIG20 does not Granger cause D2–FW20 0.7229 0.4910 
D1–FW20 does not Granger cause D1–WIG20 2.9525 0.0527 
D1–WIG20 does not Granger cause D1–FW20 2.2721 0.1036 

 

Lags length in testing equations was fixed to 2.  
Source: Author’s calculations. 

 
In the second example a 4-level multiresolution analysis was performed, 

where the maximal resolution level was 664log2 ==n . Results of the decom-
position are given in Fig. 5. One can observe that for both series periodic fluc-
tuations have been mainly taken up by details at the third level (D3), which 
corresponds to movements of periods 8–16 and includes also seasonal fluctua-
tions. It can be evidence of the seasonal character of inflation and money sup-
ply. For the decomposed series causality analysis has been performed in the 
same way as in the previous example. Pairwise Granger causality tests 
(see: Table 3) indicate that for medium-term fluctuations increases of money 
supply cause inflation, while in the long-run causation runs in both directions. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5. Multiresolution analysis for inflation index and money supply increments. Scales 
1–4 approximately correspond to periods 2–4, 4–8, 8–16, 16–32 
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Table 3. Results of pairwise causality tests for decomposed processes INF and ΔM0 
Null hypothesis F statistics p-value 

A4–INF does not Granger cause A4–ΔM0 24.0976 0.0000 
A4–ΔM0 does not Granger cause A4–INF 88.7890 0.0000 
D4–INF does not Granger cause D4–ΔM0 8.3308 0.0007 
D4–ΔM0 does not Granger cause D4–INF 1.8993 0.1590 
D3–INF does not Granger cause D3–ΔM0 1.7102 0.1900 
D3–ΔM0 does not Granger cause D3–INF 3.0417 0.0556 
D2–INF does not Granger cause D2–ΔM0 2.0721 0.1353 
D2–ΔM0 does not Granger cause D2–INF 0.1740 0.8408 
D1–INF does not Granger cause D1–ΔM0 1.1370 0.3280 
D1–ΔM0 does not Granger cause D1–INF 1.1824 0.3140 

 

Lags length in testing equations was fixed to 2.  
Source: Author’s calculations. 
 
 
4. Conclusions 
  

Wavelet analysis can be treated as frequency-domain analysis for nonsta-
tionary and non-linear processes providing insight into the dynamics of eco-
nomic time series beyond that of current methodology. This kind of time series 
techniques is capable of revealing such aspects of data like breakdown points, 
discontinuities or self-similarity and becomes a tool for the analysis of proc-
esses with transient characteristics, which are results of changing parameters or 
non-linearity of underlying mechanisms. The wavelet decomposition is a kind 
of filtration, which decomposes a time series according to different scales and 
makes it possible to analyse the series individually and compare with other se-
ries. Decomposing a time series into different scales may reveal details that can 
be interpreted on theoretical grounds as well as be used to improve forecasting 
accuracy. The wavelet technique, however, is capable of handling stationary as 
well as nonstationary processes. Thanks to this the wavelet decomposition can 
be a method of investigating long-run economic relationships and an alternative 
for cointegration analysis or the concept of co-trending of economic processes. 
Additionally, if we relax the assumption of linearity of a long-term relationship, 
the wavelet decomposition combined with non-linear causality tests (like 
Brooks and Hinich or Hiemstra and Jones tests) constitutes also an alternative 
for the concepts of non-linear cointegration (see: Granger and Hallman, 1991) 
and non-linear co-trending (see: Bierens, 2000).  
 
 
References 
 
Ariño, M. A., Morettin, P., Vidakovic, B. (1995), Wavelet Scalograms and Their Appli-

cation in Economic Time Series, Institute of Statistics and Decision Sciences, 
Duke University, Discussion Paper, 95–21.  

 
 



© C
op

yr
igh

t b
y T

he
 N

ico
lau

s C
op

er
nic

us
 U

niv
er

sit
y S

cie
nt

ifi
c P

ub
lis

hin
g H

ou
se

Joanna Bruzda 
 
194

Białasiewicz, J. T. (2000), Falki i aproksymacje (Wavelets and Approximations), Wy-
dawnictwa Naukowo-Techniczne, Warszawa. 

Bierens, H. J. (2000), Nonparametic Nonlinear Co-Trending Analysis, With an Applica-
tion to Interest and Inflation in the U.S., Journal of Business and Economic Sta-
tistics, 18, 323–337. 

Bruzda, J., Wiśniewska, E. (2002), Badanie zależności pomiędzy cenami terminowymi  
i cenami spot na przykładzie kontraktów futures na WIG20 (Investigating De-
pendences Between Spot and Futures Prices on an Example of the Contract 
FW20), in: ed. W. Tarczyński  Rynek kapitałowy. Skuteczne inwestowanie (Capi-
tal market. Effective investing). 

Daubechies, I. (1992), Ten Lectures on Wavelets, Capital City Press, Montpelier, 
Gençay, R. F., Selçuk, F., Whitcher, B. (2002), An Introduction to Wavelets and Other 

Filtering Methods in Finance and Economics, Academic Press, San Diego. 
Granger, C. W. J., Hallman, J. J. (1991), Long-memory Processes With Attractors. 

Oxford Bulletin of Economics and Statistics, 53, 11–26. 
Lin, S.–J., Stevenson, M. (2001), Wavelet Analysis of the Cost-of-Carry Model, Studies 

in Nonlinear Dynamics and Econometrics, 5(1), 87–102. 
Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.–M. (1996), Wavelet Toolbox For Use 

with MATLAB®, The MathWorks. 
Percival, D. B., Walden, A. T. (2000), Wavelet Methods for Time Series Analysis, Cam-

bridge University Press, Cambridge. 
Ramsey, J. B. (1999), The Contribution of Wavelets to the Analysis of Economic and 

Financial Data, Philosophical Transactions of the Royal Society of London, Series 
A, 357, 2593–2606. 

Ramsey, J. B., Lampart, C. (1998), The Decomposition of Economic Relationships by 
Time Scale Using Wavelets: Expenditure and Income, Studies in Nonlinear Dy-
namics and Econometrics, 3(1), 23–42. 

Schleicher, Ch. (2002), An Introduction to Wavelets for Economists, Working Paper, 
2002–3, Bank of Canada. 

Talaga, L., Zieliński, Z. (1986), Analiza spektralna w modelowaniu ekonometrycznym 
(Spectral Analysis in Econometric Modelling), PWN, Warszawa. 


