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Predictors of Non-Stationary ARIMA Processes  
 
 

This article contains a comparison of stochastic properties of non-stationary 
ARIMA(p,k,q) regular processes and their predictors by means of frequency 
characteristics of gain function and function of phase angle. 
 
 
1. The general non-stationary regular process 

 
 The general model, which generates regular stationary process  is  de-
scribed by the following difference equation: 

tX

 , (1.1) ∑∑
=

−−
=

⋅=⋅
q

r
rtrst

p

s
s X

00

  εγδ

where: 
rs γδ  ,  – real constants (weights), tε  – white noise. 

By means of operators the expression (1.1) can be written as: 
 

 tt UCXUB ε⋅=⋅ )()( ,  (1.2) 
where: 

)(UB  – stationary operator of autoregression of the p-th order, 

 ,   (1.3) p
p UUUUB ⋅−−⋅−⋅−= βββ ...1)( 2

21

ss δβ  = − , 
U  – the backward operator, 
 ,  (1.4) stt

s XXU −=⋅
)(UC – the operator of moving average of the q-th order, 

 .   (1.5) q
q UUUUC ⋅++⋅+⋅+= γγγ ...1)( 2

21
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Process (1.2) is called an ARMA(p,q) process. It is stationary, if all roots of 
 equation lie outside the unit circle and it is invertible if the roots of 
 equation belong to the 

0)( =UB
0)( =UC 1>U . 

 The evolutional non-stationary processes can be written by means of the 
generalized operator of autoregression  for which k-number of roots of 

the  equation are equal to one and the others lie outside the unit cir-
cle. 

)(* UB

0)(* =UB

 

 ,  (1.6) )()(* UBUB k ⋅Δ=
where: 

)(* UB  – the non-stationary operator of (p+k)-th ordered autoregression, 

 ,   (1.7) kp
kp UUUB +

+ ⋅−−−⋅−= **
2

*
1

* ...1)( βββ

Δ – the difference operator1, 
 ( ) tttt XUXXX ⋅−=−=Δ − 11 ,   (1.8) 

 ( ) t
n

t
n

t
n

t
n XUXXX ⋅−=⋅Δ−⋅Δ=⋅Δ −

−− 11
11 .  (1.9)                        

 

The general non-stationary regular process, also called ARIMA autoregressive-
integrated moving average process of the (p,k,q)-th order can be written as:  
 ,  (1.10) qtqttkptkptt XXX −−−−+− ⋅++⋅+=⋅−−⋅− εγεγεββ ...... 11

*
1

*
1

 ,  (1.11) tt
k

t UCXUBXUB ε⋅=⋅Δ⋅=⋅ )()()(*

 ,  (1.12) ttXU ε=⋅Π )(*

where: 
)(* UΠ  – the non-stationary operator of autoregression of order ∞, 

    (1.13)      ...1)( 2*
2

*
1

* −⋅−⋅−=Π UUU ππ

 .
)(
)()(

*
*

UC
UBU =Π   (1.14) 

If all the roots of 0)( =UC  polynomial are beyond the unit circle, the 

operator satisfies the following condition: )(* UΠ
 

 .                                  (1.15)             )()()( ** UBUUC =Π⋅
 

ARIMA (p,k,q) model generates processes, where k-th difference is a stationary 
regular process.  
 

                                                      
1 The difference operator Δ and backward U are linear, they are characterized by 

following equation: Δ = 1 – U. 
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2. The predictor of ARIMA(p,k,q) process  
 

With reference to (1.12) formula the ARIMA(p,k,q) process can be written 
s:  a  

 .                         (2.1) tttt XXX εππ ++⋅+⋅= −− ...2
*
21

*
1

 

Substituting , we obtain an equation, which is the basis in the certain 
predictor of the process for h-step forecast : 

hts +=
,...,H, h = 21 ,

 

 .                       (2.2) hththtt+h  + ... +εX + πX = πX +−+
∗

−+
∗ ⋅⋅ 2211

 

The best mean-squared predictor of the regular component for h-step forecast is 
described as follows: 

 ,                      (2.3) hthththt ε + ... + X + πX = πX +
∧

−+
∧

∗
−+

∧
∗

+
∧

⋅⋅ 2211
where: 

  
0. = 

 t, sgdy     

ht

ss ,  = XX

+
∧

∧
≤

ε
The  (2.3) equation can be also written as: 
 

,ε+...+γεγ

+ε+X+...+ βX+βX = βX

qhtqht

htk)(phtp+khththt

−+
∧

−+
∧

+
∧

+−+
∧

∗
−+

∧
∗

−+
∧

∗
+

∧

⋅⋅+

⋅⋅⋅

11

2211
  (2.4) 

where:      

  

⎩
⎨
⎧

≤

≤
∧

∧

 t.s ,ε
s  > t,

 = ε

 ts , = XX

s
s

ss

for             
for               0
for             

The forecast error )(htδ  is explained by the following equation: 

 ,                                        (2.5) ( ) ( )hxxh thtt

∧

+ −=δ
where: 

htx +    –  the real value of time series in the forecasted period; 

(h)xt
∧

 –  the prognosis made in t-th moment with the h-step forecast; 
h         –  the forecast of the time series (the forecast horizon), h  = 1, 2, …, H. 
The forecast error (2.5) can be also written as:   
 

         (2.6) .)1(...)2()1()( 121 htthttt hhh +
∗
−

∗∗ +⋅++−⋅+−⋅= εδπδπδπδ
 

From the expression (2.6) we obtain: 
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        e
The error of the predictor can be wr

−−++ ⋅ thhthtt ε                       (2.7) 

f the relations (2.6) and (2.7) are written by means of the backward operator , 

tc. 
itten as:  

 

∗∗∗ ++⋅+⋅=h ϕεϕεϕδ ....)( 11110 +
 

UI
we obtain the connection between parameters: ∗∗

w   and  ϕπ w . Denoting: 
 

( ) htt
h

h hUU +
−∗

−
∗ =⋅−−− εδππ )(...1 1

11 ,                           (2.8) 

 ( ) )h ,                        (2.9)  (... 1*
1

*
1

*
0 UU tht

h
h δεϕϕϕ =⋅+++ +

−
−                         

e obtain: 
 

w
 ( )( ) .1... ...1 1

110
1

11 =+++−−− ∗Uπ −∗
−

∗∗−∗
−

h
h

h
h UUU ϕϕϕπ          (2.10) 

he coefficients  satisfy the following difference equation: 

−− wwww  (2.11) 

 = 1, 2, ..., - 1;    

 f n of the forecast error of regular component is as follows: 

121 −++++= ht h ϕϕϕσδ ε .                 (2.12) 
 

eral form of predictor of ARIMA(p,k,q) process is: 

 
= =

+
0 1=r

*
r-h

*

1 1

*
s-h

*
h f + f  + f = ˆ

s
stsrrtrs

r s
tht XXx εγβ ,           (2.13) 

where the relation between parameters  and  is as it follows: 

 

*
i

*
-k

*                (2.14) 

The forecast error of the ARIMA(p,k,q) process can be rewritten as: 

 

T ∗ϕw

 ,... ∗∗∗∗∗∗∗ ⋅++⋅+⋅= ϕπϕπϕπϕ                     02211

w h 10 =∗ϕ . 
 

he variance unctioT  

2222 ∗∗∗ ])(...)()(1[)](var[
 

The gen
 

−+ −+ 1-q q1kp rkp

∑∑∑ ∑
=

−+−+

*
if

*
sβ

.for  0

01

21

0

02211

 i > p+k   =         β                                        

, = ,   f =         f                                        

, ..., =         i                                         
,f + ... + βf + βf = βf **

i
*
i

**
i

**
i −−
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 ,  (2.15) ∑
−

=
−+

1

0

*
w = )(

h

w
whtt h εϕδ

where: 

                          (2.16)         

.=f

  r >q,   = γ

,γf = 

*
-k

r

r

w

r

*
w-r

*
w

0

dla0
0
∑
=

ϕ

For example, for the ARIMA(0,1,q) process we obtain: 
                                     (2.17) )1*(

11
*
1

* ) + ( = −⋅ w
w βγβϕ

and the variance of the forecast error is as follows:  

                     (2.18) [ ] ( ) .β + γβ +  = σ(h)δ
h-

w=

)(w**
εt

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅∑ −

1

1

12
1

2
11

2 1var

According to the (2.18) expression, the longer the forecast period is, the greater 
the variance of forecast error is. 
 Clements (2001) studies predictors of different non-stationary processes and 
their forecast failure. 
 
 
3. Spectral representation of ARIMA(p,k,q) process 
 

Priestley (1981) shows the spectral representation of non-stationary proc-
esses and compares spectrum of theoretical and evolutionary processes for dif-
ferent values of t. 

If the stochastic process  is an output of the linear filter with an operator 
L and a white noise 

tX

tε as input:  
 

 tt LX ε⋅= ,                                            (3.1) 
the stochastic process is shown by the following spectral presentation:  
 

 ,                               (3.2) )()( ωω ε

π

π

tωi
t  dZeH  =  X ∫

−

⋅⋅⋅

 t = 0, ± 1, …, 
where: 

)(ωH  –  function of reaction frequency also called the transfer function, 

 )  –  complex form of (ωε

π

π

ω dZe ti∫
−

⋅⋅
tε . 
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 Simulation linear filters unchanged in time2 transform every stationary en-
trance process into the stationary output process. The transfer function can be 
written in the complex form: 
 ,                                         (3.3)            φ(ω)ie)) = G(H( ⋅−⋅ωω
where:                                     

 [ ] [ ]22 )(Im)(Re)() ωωω  H H= HG(ω += ,  (3.4) 
 

The module )(ωH , which is the amplitude characteristic, is called the gain 
function; 

 ,
 H
 HHφ(ω)

)(Re
)(Im tan arc)(arg

ω
ωω ==                             (3.5) 

The argument )(ωH is called the function of phase  angle. Using formulas (3.3) 
and (3.2) we obtain: 

 

                               (3.6) [ ] .)()( ωω ϖ
ε

π

π

)φ(tωi
t dZ eG = X ∫

−

−⋅⋅⋅

The expression (3.6) shows, that the equivalent of entrance process with fre-
quency ω  is the output with the same frequency, but weighted in an  amplitude 
by the  factor )(ωG  and  shifted in a  phase by )(ωφ . The filtration of station-
ary stochastic processes modifies the amplitude of harmonic components of the 
process and causes phasic movement of these components.  
It is said, that the filter is completely precise if the increase function and the 
function of the phase angle are known.  
The parameter  

 0       ,)( = )( ≠ω
ω
ωφωτ                                       (3.7) 

measures the movement of phase in a time unit and it is called the postponement 
function. The filter L postpones the original time of the harmonic with fre-
quency ω  with )(ωτ  time units. 
 The ARIMA(p,k,q) process can be treated as output  of a linear filter 

with operator , with a white noise 
tX

)(* UΠ tε as an input. Spectral presentation of 
ARIMA(p,k,q) process is shown in the following formula: 

                                                      
2 Simulation linear filters unchanged in time are: , t = 0, ±1, 

…; p, q >0; h – real; , which are linear: 

t-s

q

s=-p
stt XhLXY ∑==

s ∞<∑
−=

q

ps

2
sh tttt β LXα LX)β XL(α(α 2121 +=+  

and unchanged in time. It means that if L⋅X t = Y t , then  L⋅X = Y  for every r. See: 
Talaga, Zieliński (1986), § 1.5. 

rt+ rt+
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 ,                                 (3.8) ZF e = X ε
*

π

π

ti
t )()( ωωω∫

−

where the  transfer function  can be rewritten: )()( * ωω FH =

 , = 

)(-

 = 
)(
)( = )(

0=j

0

*

0
r

*
* ji*

jkp

s

si
s

q

r

ri

e

e

e

B
CF ω

ω

ω

ϕ

β

γ

ω
ωω −

∞

+

=

−

=

−

∑
∑

∑
                      (3.9) 

and the coefficients  are described by means of following equation: *
jϕ

 ,     i =  1, 2, … (3.10) *
)(

**
2

*
2

*
1

*
1

* ... kpikpiiii +−+−− ⋅++⋅+⋅+= ϕβϕβϕβγϕ

  
i>q. = γ
 = 

i

*
-k

   dla   0
;0     1; = *

0 ϕϕ

With reference to formula (1.6) the coefficients  can be 
shown as 

kpvv +=∗  2,..., 1,   ,β

sβ  parameters: 

  ( ) ( ) ( ) ( ) ( ) ( )[ ] ,11122110  - - β  - ... β +β - β = β k
r

r k
r-r-

k
r-

k
r

k
r ⋅⋅±⋅⋅⋅∗

                                                                     r = 1, 2, … , p–1; 

  
( )
( ) ( ) ( ) ( ) ( ) ( )[ ],1

1

112211
k
s

p k
s-p-

    k
s-pp-

    k
s-pp

 k
s-p

ps
s

 - - β  - ... β  +β  -β 

- = β

⋅⋅±⋅⋅⋅⋅

⋅

++

+∗

                                                                      s = p, p+1, … , p+k–1; 

p
k

kp  β) = (- β ⋅∗
+ 1                                    (3.11) 

 
The predictor (2.16) can be rewritten as: 

 .                                      (3.12) wt
w

*
h+whtx −

∞

=
+ ∑ εϕ

0

 = ˆ

Spectral presentation of (3.13) predictor  is as follows: 

 ,                      (3.13) [ ]{ )()(F - )( = ˆ *

-

ωωω ε
ω

π

π

dZFeex *
h

hiiωω
ht ∫+ }

where: 
                     (3.14) ... +  +  = )()( )1(

1
** ωω ϕϕωω +−−− hi*

h+
ih*

hh eeFF
The transfer function of (3.13) predictor is shown in equation (3.15): 
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                                     (3.15) ωϕω )(*
s

*  = )( hsi

hs
h eH −−

∞

=
∑

and a function of  movement of  ARIMA(p,k,q) process predictor is shown as 
follows: 

 .)sin(  + )cos( = )(
2

1

*
s

2
*
s

2*

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∑∑

∞

+=

∞

= hshs
h hshsH ωϕωϕω          (3.16) 

 The gain function )(ωG  has been compared with the function of the phase 
angle )(ωφ  of an ARIMA(1,1,1)-th ordered autoregressive-integrated moving 
average process and its predictor for different values of β and γ parameters.  
 

0 30 60 90 120 150 180
0

200

400

Gp ω( )

G1 ω( )

G2 ω( )

ω

0 30 60 90 120 150 180
150

100

50

0

50

φp ω( )

φ1 ω( )

φ2 ω( )

ω  
Fig. 1. The gain function of the Gp(ω) process and of  the predictor of the 

ARIMA(1,1,1) process for h = 1 (G1) and h = 2 (G2); the function of the phase 
angle of the φp(ω) process and of the predictor of ARIMA(1,1,1) process for  
h = 1 (φ1) and h = 2 (φ2), 1β  = 0.9; 1γ  = –0.4. 
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Fig. 2. The gain function of the Gp(ω) process and of  the predictor of the 

ARIMA(1,1,1) process for h = 1 (G1) and h = 2 (G2); the function of the phase 
angle of the φp(ω) process and of the predictor of ARIMA(1,1,1) process for  
h = 1 (φ1) and h = 2 (φ2), 1β  = –0,5; 1γ  = –0.5. 
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Fig. 3. The gain function of the Gp(ω) process and of  the predictor of the 

ARIMA(1,1,1) process for h = 1 (G1) and h = 2 (G2); the function of the phase 
angle of the φp(ω) process and of the predictor of ARIMA(1,1,1) process for  
h = 1 (φ1) and h = 2 (φ2), 1β  = –0,9; 1γ  = 0.4. 
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Fig. 4. The gain function of the Gp(ω) process and of  the predictor of the 

ARIMA(1,1,1) process for h = 1 (G1) and h = 2 (G2); the function of the phase 
angle of the φp(ω) process and of the predictor of ARIMA(1,1,1) process for  
h = 1 (φ1) and h = 2 (φ2), 1β  = 0,9; 1γ  = 0.5. 

 
 The values of the gain function )(ωpG of the ARIMA(1,1,1) process show, 
that the filter of this process leaks highly the components of low frequencies for 
various values of 1β  and 1γ  parameters. The filter damps almost completely the 
componets of others frequencies. If 01 >β , the filter damps completely the 
components of others frequencies. If 01 <β , the filter leaks the components of 
high frequencies. 
 The gain function )(ωhG  of the predictor of the ARIMA(1,1,1) process 
damps the components of low frequencies and for higher frequencies it pro-
ceeds like the )(ωpG  gain function of the process. The gain function of predic-
tors for different forecasts (h = 1 i h = 2) has almost an identical outcome. The 
comparison between the gain function of the process and the gain function of 
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predictor of the ARIMA(1,1,1) process brings us to the conclusion, that the 
effectiveness of the predictors is greater for the components of those frequen-
cies, for which the )(ωpG gain function of the process and )(ωhG gain function 
of the predictor are the same shape. For the ARIMA(1,1,1) process the effec-
tiveness of the predictors is greater for short-term fluctuations. 
 The sign of the 1β  parameter of autoregression affects the shape of the func-
tion of the phase angle of the process ( )ωφ p  the function of the phase an-

gle of the predictor 

 and

)(ωφh f the  ARIMA(1,1,1) process.    o
 If 01 >β  the phase shift of the process is negative. In the interval of low 
frequencies the shift increases, and in other interval – it decreases. That means 
that the components of low frequencies are more lagged than the components of 
high frequencies. In the interval of higher frequencies the gradient of the func-
tion of the phase angle is almost constant, so the time-delay ( ωωφ /)( ) is al-
most equal. The negative phase shows that the output process is lagged behind 
the input process. The phase shift of the predictor is the similar shape but with 
less values (especially in the interval of low frequencies). The phase shift of the 
predictors for the forecasts: h = 1 and h = 2 is identical. The comparison be-
tween the function of the phase angle of the process and of the predictor brings 
us to the conclusion, that the effectiveness of the predictors is greater for the 
components of the high frequencies than for the low frequencies components. 
 If 01 <β , the shapes of the function of the phase angle of the process and 
of the predictors of ARIMA(1,1,1) process are completely different. Their 
signs, their values of the shift and their forecasts (h = 1 i h = 2) are different. 
 The considerations above say that if the shapes of the gain function and of 
the function of the phase angle of the process and of the predictors of the 
ARIMA(p,k,q) process have identical outcomes – the effectiveness of the pre-
dictors is much greater than when the shapes of those functions are completely 
different. 
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