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Predictors of Non-Stationary ARIMA Processes

This article contains a comparison of stochastic properties of non-stationary
ARIMA(p,k,q) regular processes and their predictors by means of frequency
characteristics of gain function and function of phase angle.

1. The general non-stationary regular process

The general model, which generates regular stationary process X, is de-
scribed by the following difference equation:

p q
Z§s 'Xt—szzyr'gt—ra (1.1)
5s=0 r=0

where:
o,,y, —real constants (weights), &, — white noise.
By means of operators the expression (1.1) can be written as:

BU)- X, =C(U) ¢, (1.2)
where:
B(U) — stationary operator of autoregression of the p-th order,
BU)=1-p,-U=p,-U>-..=B,U”, (1.3)
_ ﬂs = 5s P
U - the backward operator,
U' X, =X,,, (1.4)

C(U) — the operator of moving average of the ¢-th order,
CUY=1+y, U+yy U +..+y, U (1.5)
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Process (1.2) is called an ARMA(p,q) process. It is stationary, if all roots of
B(U) =0 equation lie outside the unit circle and it is invertible if the roots of

C(U) =0 equation belong to the |U | >1.
The evolutional non-stationary processes can be written by means of the
generalized operator of autoregression B" (U) for which k-number of roots of

the B” (U) =0 equation are equal to one and the others lie outside the unit cir-
cle.

B*(U)=A"-BU), (1.6)
where:
B*(U) —the non-stationary operator of (p+k)-th ordered autoregression,

B U)=1=B; U=, == B - U, (1.7)
A — the difference operator’,

AX, =X, - X, =(1-U)-X,, (1.8)

A" X, =N X, AT X, =(-U)" X, (1.9)

The general non-stationary regular process, also called ARIMA autoregressive-
integrated moving average process of the (p,k,q)-th order can be written as:

X, _ﬂl* X _~--_ﬂ;+k Kipk =€ HVEq Tty 6y, (110)

B'(U)-X,=BU)-A" - X,=C(U)-¢,, (1.11)

n'wy-Xx, =e¢, (1.12)
where:

' (U) — the non-stationary operator of autoregression of order oo,

n'Wy=l-=, -U-ny -U*—.. (1.13)
« - B'(U)
5l (U)——C(U) . (1.14)

If all the roots of C(U)=0 polynomial are beyond the unit circle, the
n (U) operator satisfies the following condition:
CU)-II"(U)=B"(U). (1.15)

ARIMA (p,k,q) model generates processes, where k-th difference is a stationary
regular process.

' The difference operator A and backward U are linear, they are characterized by
following equation: A=1-U.
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2. The predictor of ARIMA(p,k,q) process

With reference to (1.12) formula the ARIMA(p,k,q) process can be written
as:

* *
‘X; =70 ')(t—l +7Z'2'Xt_2 +...+€t. (21)

Substituting s =7 + &, we obtain an equation, which is the basis in the certain
predictor of the process for A-step forecast, 7 =12,....H :

% *
Xpn =0 Xpyp T Xpypg + o Fepgy, (2.2)

The best mean-squared predictor of the regular component for h-step forecast is
described as follows:

A

A A A
* *
Xesh =) - Xesh-1 + 70y - Xewh2 .0+ &4, (2.3)
where:

A
Xs =X, gdy s<t,
A
Erh =0.
The (2.3) equation can be also written as:

A

A A A A
* * *
Xown =Py - Xewna By - Xown2Ft B g - Xevh-pri) T €0en +

AN AN
T Erh-l T Y, Ervhg

2.4)

where:

A

Xs =X, for s < ¢

A 0, for s >1¢
for s <t

57

The forecast error J,(h) is explained by the following equation:

81 (h)=x1ep = x:(h), (235)
where:
X;,;, — the real value of time series in the forecasted period;

AN
x: (h) — the prognosis made in #~th moment with the /4-step forecast;

h — the forecast of the time series (the forecast horizon), # =1, 2, ..., H.
The forecast error (2.5) can be also written as:

S,(N=n] -8,(h=1)+75-8,(h=2)+..+7) 1 5, ()+ &, (2.6)

From the expression (2.6) we obtain:
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o,()=¢,4

5t(2):7[1* 0, (D +é&0 =6140 +771* "€l

* * * *2 *
6,3)=m 6,(Q+7my -6, (N+&3 =63 +7 '5t+2+(”1 +772)‘5t+1

5 _ * *2 * *3 * * *
(D)= 4+7 Ep3H| T AT |t 20w Ty 7y |6

etc.
The error of the predictor can be written as:

S,(M) =@ & + @1 Eypt T T Pht - Epyy- (2.7)
If the relations (2.6) and (2.7) are written by means of the backward operator U,

we obtain the connection between parameters: 7., and ¢, . Denoting:

(1—;z;‘U —...—ﬂ;_lU”*l)- s,(h=¢,,, (2.8)

oy + 01U+t 0 U ) ey =5,(h). (2.9)
we obtain:

(1 —U — .= U )(go; +oiU+..+¢@, UM )= 1. (2.10)

The coefficients ¢}, satisfy the following difference equation:
Q=T P T Py F T 0 (2.11)
w=1,2,.., h-1; ¢5=1.

The variance function of the forecast error of regular component is as follows:

var[8, ()] = o 2[1+ (p])* +(93) + ...+ (9j_)*]. (2.12)
The general form of predictor of ARIMA(p,k,q) process is:

p+k—-1 p+k-r

xt+h th + Z th sﬂHr t—r +szh 1V r+s€i-s > (213)

s=0 r=1
where the relation between parameters fi and ﬂs is as it follows:
Ji =Bifia tBafin v B Sy,
i=12,..
fo =1 f4 =0,
,b’[* =0 for i>p+k.
The forecast error of the ARIMA(p,k,q) process can be rewritten as:

(2.14)
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h—1
5, (M)= P Erein (2.15)

w=0
where:

w
On =D SV
r=0

y,=0 dla r>gq, (2.16)
f3=0.
For example, for the ARIMA(0,1,g) process we obtain:
o =B +y)- B (2.17)
and the variance of the forecast error is as follows:

h-1
* 2 *D (e
varls, ] =21+ 3 g7+ f ooV | (2.18)
w=1

According to the (2.18) expression, the longer the forecast period is, the greater
the variance of forecast error is.

Clements (2001) studies predictors of different non-stationary processes and
their forecast failure.

3. Spectral representation of ARIMA(p,k,q) process

Priestley (1981) shows the spectral representation of non-stationary proc-
esses and compares spectrum of theoretical and evolutionary processes for dif-
ferent values of ¢.

If the stochastic process X, is an output of the linear filter with an operator
L and a white noise ¢, as input:

X,=L-¢,, (3.1)
the stochastic process is shown by the following spectral presentation:
/4
X, = J H(w)- e dZ, (o), (3.2)
t=0,t1,...,
where:

H(w) — function of reaction frequency also called the transfer function,

T
J e"'dZ (w) — complex form of &,.

-
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Simulation linear filters unchanged in time® transform every stationary en-
trance process into the stationary output process. The transfer function can be
written in the complex form:

H(w) = G(w) e @, (3.3)
where:

G(w) =|H (@)= {[Re H(@)] +[im H(@)] (3.4)
The module H(w), which is the amplitude characteristic, is called the gain
function;

Im H(w)
w)=arg H(w) = arc tan ————=, 3.5
¢(w)=arg H(w) Re H(w) (3.5)

The argument H(w) is called the function of phase angle. Using formulas (3.3)
and (3.2) we obtain:

T
X, = IG(w)- eor0@lyz (). (3.6)
-
The expression (3.6) shows, that the equivalent of entrance process with fre-
quency o is the output with the same frequency, but weighted in an amplitude
by the factor G(w) and shifted in a phase by ¢(@). The filtration of station-

ary stochastic processes modifies the amplitude of harmonic components of the
process and causes phasic movement of these components.

It is said, that the filter is completely precise if the increase function and the
function of the phase angle are known.

The parameter

r(w)zm, o #0 (3.7)
1)
measures the movement of phase in a time unit and it is called the postponement
function. The filter L postpones the original time of the harmonic with fre-

quency @ with 7(®) time units.
The ARIMA(p,k,q) process can be treated as output X, of a linear filter

with operator 1" (U), with a white noise &;as an input. Spectral presentation of
ARIMA(p.,k,q) process is shown in the following formula:

q
* Simulation linear filters unchanged in time are: Y, = LX, = Y h X
s=-p

t=0, £,

1-s

q
3Py q>0;h —real; Y h? <oo, which are linear: L(a(a,, +f X, )=aLX +fLX,,
s=—p

and unchanged in time. It means that if L-X, = Y, then L-X
Talaga, Zielinski (1986), § 1.5.

wr = Y, forevery r. See:
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X, = Ie"“’f F*(@0)Z, (), (3.8)

where the transfer function H(w) = F : (w) can be rewritten:

q .
C( ) Z}/re—twr ;
* @ r=0 * —iwj
F (0)=———= =Y ¢p.e', (3.9)
B (w) p+k Z J

Z (‘ﬁ: )e—ia)s =0
s=0

and the coefficients goj- are described by means of following equation:

O =i+ B @it By Oig et Bk Piipinys 1= 1,2, (3.10)
0o =1 ¢} =0;
y; =0 dla i>q.

With reference to formula (1.6) the coefficients B, v=1,2,.., p+k can be

shown as S parameters:

By = [(g)ﬂr - ({{)'ﬁr-l +(§)'ﬁr-2 -t r]fl P - (‘1)r' (lr{ )],

pr=)

’ [(s]fp)'ﬁp '(S-pk+l) 'ﬁp—l +(S-pk+2) 'ﬁp-Z -t (s]fl)'ﬁl - ('l)p ’ (f )l
s=p, ptl, ..., ptk-1;

Bk = (V" B, (3.11)
The predictor (2.16) can be rewritten as:

Roon = D PhowEi - (3.12)
Spectral pr:s:f(:)ntation of (3.13) predictor is as follows:

S = Tef“’w{e"”” [F* (@) -F ()|}dz, (@), (3.13)
where: ’

F (@)= Fj (@)= e " + @y " + (3.14)

The transfer function of (3.13) predictor is shown in equation (3.15):
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Hy(@)=) pje ™M (3.15)
s=h
and a function of movement of ARIMA(p,k,q) process predictor is shown as
follows:

2 2
‘H; (a))‘2 = {Z (o: cos(s — h)a)} J{ Z (0: sin(s — h)a)} . (3.16)
s=h

s=h+1
The gain function G(®@) has been compared with the function of the phase
angle ¢(w) of an ARIMA(1,1,1)-th ordered autoregressive-integrated moving
average process and its predictor for different values of fand y parameters.
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Fig. 1. The gain function of the G,(w) process and of the predictor of the
ARIMA(1,1,1) process for 7 = 1 (G,) and & = 2 (G,); the function of the phase
angle of the ¢@,(w) process and of the predictor of ARIMA(1,1,1) process for

h=1(4)and h=2 (), B, =0.9; y, =—0.4.
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Fig. 2. The gain function of the G,(w) process and of the predictor of the
ARIMA(1,1,1) process for 7 = 1 (G) and & = 2 (G,); the function of the phase
angle of the ¢@,(w) process and of the predictor of ARIMA(1,1,1) process for

h=1(4)and h=2 (), B =-0.5; ¥, =—0.5.
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Fig. 3. The gain function of the G,(w) process and of the predictor of the
ARIMA(1,1,1) process for 2 = 1 (Gy) and & = 2 (G,); the function of the phase
angle of the ¢@,(w) process and of the predictor of ARIMA(1,1,1) process for

h=1(d)and h=2 (), B =-0.9; ¥, =0.4.
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Fig. 4. The gain function of the G,(@w) process and of the predictor of the
ARIMA(1,1,1) process for 7 =1 (G;) and & = 2 (G,); the function of the phase
angle of the ¢@,(w) process and of the predictor of ARIMA(1,1,1) process for

h=1(¢)and h=2($), B =0.9; 7, =0.5.

The values of the gain function G , (@) of the ARIMA(L,1,1) process show,
that the filter of this process leaks highly the components of low frequencies for
various values of £, and y, parameters. The filter damps almost completely the
componets of others frequencies. If f; >0, the filter damps completely the
components of others frequencies. If S, <0, the filter leaks the components of
high frequencies.

The gain function G,(w) of the predictor of the ARIMA(1,1,1) process
damps the components of low frequencies and for higher frequencies it pro-
ceeds like the G, (@) gain function of the process. The gain function of predic-

tors for different forecasts (2 =11 A = 2) has almost an identical outcome. The
comparison between the gain function of the process and the gain function of
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predictor of the ARIMA(1,1,1) process brings us to the conclusion, that the
effectiveness of the predictors is greater for the components of those frequen-
cies, for which the G, (@) gain function of the process and G, (@) gain function

of the predictor are the same shape. For the ARIMA(1,1,1) process the effec-
tiveness of the predictors is greater for short-term fluctuations.
The sign of the S, parameter of autoregression affects the shape of the func-

tion of the phase angle of the process ¢,(w) and the function of the phase an-

gle of the predictor ¢, (®) of the ARIMA(1,1,1) process.
If B, >0 the phase shift of the process is negative. In the interval of low

frequencies the shift increases, and in other interval — it decreases. That means
that the components of low frequencies are more lagged than the components of
high frequencies. In the interval of higher frequencies the gradient of the func-
tion of the phase angle is almost constant, so the time-delay (#(w)/ @) is al-

most equal. The negative phase shows that the output process is lagged behind
the input process. The phase shift of the predictor is the similar shape but with
less values (especially in the interval of low frequencies). The phase shift of the
predictors for the forecasts: # = 1 and # = 2 is identical. The comparison be-
tween the function of the phase angle of the process and of the predictor brings
us to the conclusion, that the effectiveness of the predictors is greater for the
components of the high frequencies than for the low frequencies components.

If B, <0, the shapes of the function of the phase angle of the process and

of the predictors of ARIMA(1,1,1) process are completely different. Their
signs, their values of the shift and their forecasts (4 =11 4 = 2) are different.

The considerations above say that if the shapes of the gain function and of
the function of the phase angle of the process and of the predictors of the
ARIMA(p.k,q) process have identical outcomes — the effectiveness of the pre-
dictors is much greater than when the shapes of those functions are completely
different.
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