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1. Introduction 
 
 In order to illustrate a formal Bayesian comparison of various bivariate 
ARCH-type models through their Bayes factors, Osiewalski and Pipień (2003) 
used two foreign exchange rates that were most important for the Polish econ-
omy till the end of 2001, namely the zloty (PLN) values of the US dollar and 
German mark. The data consisted of the official daily exchange rates of the 
National Bank of Poland (NBP fixing rates). By restricting to only bivariate 
VAR(1) models with GARCH(1,1) or ARCH(1) disturbances, it was possible to 
estimate unparsimoniously parameterised specifications, such as general multi-
variate ARCH-type models, presented by Engle and Kroner (1995) and Gouri-
eroux (1997, ch.6). These models have much more parameters than univariate 
ARCH and GARCH models, proposed originally by Engle (1982) and Boller-
slev (1986), and analysed using the Bayesian approach by Geweke (1989), 
Kleibergen and Van Dijk (1993), Bauwens and Lubrano (1998), Bauwens, Lu-
brano and Richard (1999), Osiewalski and Pipień (1999, 2000), Vrontos, Della-
portas, and Politis (2000) and Bos, Mahieu and Van Dijk (2000). The number of 
free parameters of multivariate ARCH-type models can increase very fast as the 
dimension k of the vector time series grows. In the general version of the  
k-variate VechGARCH(p,q) (or VECH(p,q)) model, this number is a fourth 
order polynomial of k, making even VECH(1,1) impractical for k > 2. Thus, 
within ARCH-type models, interest focuses on restricted ARCH and GARCH 
specifications or on factor ARCH models; see e.g. Diebold and Nerlove (1989), 
King, Sentana and Wadhwani (1994) and Gourieroux (1997, ch. 8). Apart from 
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the dimension of the parameter space, Osiewalski and Pipień (2003) considered 
other aspects of empirical ARCH-type specifications: free conditional covari-
ances versus constant conditional covariances or correlations, direct ARCH 
versus latent factor ARCH models, conditional Normality versus Student t tails, 
and the ARCH(1) structure versus GARCH(1,1). 
 In our previous study only pure time-series models for daily data were used, 
without introducing any variables that would be motivated by theoretical con-
siderations. The relationship: (PLN/USD)/(PLN/DEM) ≈ DEM/USD, which 
linked two Polish official exchange rates to the international FOREX market, 
was ignored. In this paper we assume that this approximate relation (in log 
terms) is a cointegration equation in the sense of Engle and Granger (1987) and 
that the DEM/USD rate is weakly exogenous in the Bayesian sense of Florens 
and Mouchart (1985) and Osiewalski and Steel (1996). We build a two-equation 
conditional model with the error correction mechanism (ECM) and the distur-
bances following one of the competing bivariate GARCH specifications. The 
aim of the paper is to check sensitivity of our Bayesian model comparison with 
respect to the presence of the third (exogenous) exchange rate.  
 In view of high dimensionality of the parameter spaces and non-standard 
forms of the posterior densities as well as their full conditionals, we use the 
Metropolis-Hastings (M–H) algorithm to simulate and explore the posterior 
distributions. The values of the marginal data densities for each model, which 
are the main quantities for Bayesian model comparison, are approximated by 
means of the Newton and Raftery’s (1994) estimator, based on the harmonic 
mean of the likelihood values calculated at M–H draws from the posterior. Both 
the bivariate framework and a short time series (475 daily observations) enable 
us to obtain final results for all models rather quickly.  
 The structure of the paper is as follows. The next section shows the data and 
the ECM-type model framework for daily growth rates of two exchange rates. 
Section 3 presents all the models used for the bivariate error term of the basic 
specification and ranks the models using Bayes factors. Section 4 concludes.  
 
 
2. The Data and Model Framework 
 
 In order to compare competing bivariate ARCH-type specifications we use 
the growth rates of PLN/USD and PLN/DEM. Osiewalski and Pipień (1999, 
2000) modelled these two series using univariate AR(1) – t-GARCH(1,1) mod-
els. Our original data set consists of 478 daily observations on three exchange 
rates: PLN/USD (x1t) PLN/DEM (x2t) and DEM/USD (wt), covering the period 
from February 1, 1996 till December 31, 1997. The first three observations from 
1996 (February 1,2,5) are used to construct initial conditions. Thus T, the length 
of the modelled vector time series of daily growth rates of x1t and x2t is equal to 
475.  

 
 



© C
op

yr
igh

t b
y T

he
 N

ico
lau

s C
op

er
nic

us
 U

niv
er

sit
y S

cie
nt

ifi
c P

ub
lis

hin
g H

ou
se

Bayesian Comparison of Bivariate GARCH Processes in the Presence … 27

 We denote our modelled bivariate observations as yt=(y1t,y2t)`, where y1t is 
the daily growth (or return) rate of the US dollar and y2t is the daily growth (or 
return) rate of the German mark, both expressed in percentage points and ob-
tained from the daily exchange rates xit, i=1,2, by the formula yit=100ln(xit/xit-1). 
We also define ECMt = lnx1t-lnx2t-lnwt and zt=100ln(wt/wt-1), and model our data 
using the conditional ECM-type VAR(1) framework: 
 

 ttttt ECMzyRy ελαδδ +⋅++−=− −− 11 )(  
 
with the error term described by competing bivariate ARCH specifications. 
More specifically,  
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   (1) 
 
The elements of δ, R, α and λ are common parameters, which we treat as a pri-
ori independent of model-specific parameters and assume for them the multi-
variate standardised Normal prior N(0, I10), truncated by the restriction that all 
eigenvalues of R lie inside the unit circle.  
 In the next section we present and compare 10 different ARCH-type speci-
fications for the disturbances of the bivariate VAR(1) model in (1).Within the 
Bayesian posterior odds approach, the explanatory power of the i-th model is 
summarised by the marginal density of the T× 2 observation matrix y=(y1...yT) 
(given the initial conditions y(0)), evaluated at the actual data. This density value 
is calculated by integrating (averaging) the likelihood function with respect to 
the proper prior distribution of the parameter vector θ(i)∈Θi: 
 

 . (2) ∫
Θ

=
i

iiiii dpyMypyMyp )()()0()()0( )(),,|(),|( θθθ

 
Competing models are compared pair-wise through the Bayes factor 
Bij=p(y|Mi,y(0))/ p(y|Mj,y(0)), which, together with the prior odds ratio  
P(Mi)/ P(Mj), determines the posterior odds of Mi against Mj: 
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where P(Mh) and P(Mh | y, y(0)) are, respectively, the prior and posterior prob-
ability of Mh; see, e.g. O’Hagan (1994). Direct evaluation of the integral in (2) 
(through either numerical quadratures or Monte Carlo sampling from the prior 
density) is not efficient or even not feasible when the dimension of the parame-
ter space is as high as in the models considered in this paper. Thus we have to 
resort to other numerical tools, based on good exploration of the parameter 
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space through sampling from the posterior. Here we use Metropolis-Hastings 
Markov chains; see, e.g. O’Hagan (1994), Gamerman (1997).  
 Using simple identities, we can write the marginal data density in the form  
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where P(θ(i)|Mi,y,y(0)) denotes the posterior cumulative distribution function. 
Formula (3) is the basis of the method by Newton and Raftery (1994), which 
approximates the marginal data density by the harmonic mean of the values  
P(y|Mi, θ(i),y(0)), calculated for the observed y and for θ(i) drawn from the poste-
rior distribution. The N–R harmonic mean estimator is consistent, but without 
finite asymptotic variance. Despite this serious theoretical weakness, the N–R 
estimator (very easy to compute) was quite stable for all our models.  
 
 
3. Competing specifications 
 
 In this section we present and compare 10 different ARCH-type specifica-
tions for the disturbances of the bivariate VAR(1) model (1). We try to follow 
the general-to-specific strategy and start with two non-nested, conditionally  
t distributed multivariate GARCH(1,1)-type processes: the Vech-GARCH 
specification and Bollerslev’s (1990) Constant Correlation model. We then con-
sider five simplifications of t-VECH(1,1), including a simple BEKK formula-
tion, which explains our data best. Hence we also examine special cases of our 
favourite t-BEKK(1,1) specification in search of a good and even more parsi-
monious model.  
 
3.1. Basic non-nested specifications 
 
 First we consider the t-VECH(1,1) model (M1), where the conditional distri-
bution of εt (given its past, denoted by ψt-1) is Student t with a zero location 
vector, inverse precision matrix Ht and unknown degrees of freedom ν > 2, i.e. 
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where the vectorisation of the lower part of Ht is parameterised as  
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   (4) 
 
with H0 = h0 I2 and h0 treated as an additional free parameter. Remind that the 
conditional covariance matrix of εt given ψt-1 is (ν – 1)–1ν Ht. In the k-variate 
version of this model the number of free parameters of the error process εt is  
a fourth order polynomial of k, namely 2+[1+k(k+1)]k(k+1)/2; this gives 23 
parameters when k=2. We assume prior independence for ν , h0 and the three 
groups of parameters in (4). The degrees of freedom parameter follows the Ex-
ponential distribution with mean 10, Exp(10), truncated by the condition ν > 2. 
The initial value h0 has the Exponential prior with mean 1, Exp(1). For aj0’s we 
assume the product of the densities of the following distributions: Exp(1) for a10 
and a30, and N(0, 1) for a20, truncated by the restriction that a10⋅a30 – a20

2>0. The 
prior densities of the other parameters are the products of the densities of the 
following Normal distributions: 
 

 , , , , )1;5.0(~11 Na )1;5.0(~33 Na )1;5.0(~11 Nb )1;5.0(~33 Nb
  and  for all other pairs (i,j); )1,0(~ Naij )1,0(~ Nbij
 
these densities are truncated by the restrictions that the matrices  
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be nonnegative definite (Gourieroux, 1997) and the eigenvalues of BB1 lie inside 
the unit circle. 
 Bollerslev (1990) argues that, for exchange rates, the assumption of constant 
conditional correlation may be appropriate. Thus, we also consider the follow-
ing model (M2): 
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where ρ12 is the time-invariant conditional correlation coefficient. In M2, as in 
M1, H0 = h0 I2, where h0 has the Exponential prior with mean 1. For the remain-
ing parameters we take the following priors: 
 

)1(~10 Expa , ,  )1(~20 Expa ),]1,0([~),,,( 4
22112211 Ubbaa ])1,1([~12 −Uρ , 

 
where U(A) denotes the uniform distribution over A. In its k-variate version, M2 
describes tε  using only 2+3k+k(k-1)/2 free parameters; so we have 9 parame-
ters when k=2.  
 Table 1 summarises model assumptions and presents the decimal logarithms 
of the Bayes factors in favour of M1, log10(BB1j) for j=1,2. The decimal logarithm 
of the Bayes factor of M1 against M2, log10(B12B )=29.63, indicates that – under 
equal prior probabilities – M1 is about 30 orders of magnitude more probable  
a posteriori than M2. This means that the constant conditional correlation as-
sumption is simply improbable a posteriori (relative to the VECH model with 
no restrictions on its conditional correlations). M2 seems too restrictive, so its 
simplifications and special cases will not be considered. However, the VECH 
model is unparsimoniously parameterised, and thus completely impractical for 
k > 2. Hence, we consider some of its special cases in search of even better 
models.  
 
Table 1. Two basic models and logs of Bayes factors in favour of M1
 

Model Description )(log 110 jB  

1M  t-VECH(1,1) ),,0(~,| ttt HtH ννε   with  in (4) tHvech 0 

2M  t-Constant Condi-
tional Correlations 

),,0(~,| ttt HtH ννε  

1,
2

1,0, −− ++= tiiiitiiiitii hbaah ε  (i=1,2) 

ttt hhh ,22,1112,12 ρ=  

29.63 

Priors: ,  ~ Exp(1), 10a 30a 0h ν ~ Exp(10), , , ~ N(0.5, 1), ρ11a 22a 33a 12 ~ U(–1, 1), 
other ~ N(0, 1) 
Restrictions: see the main text  
 
3.2. Simplifications of t-VECH(1,1) 
 
 All five models considered in this section can be obtained from  
t-VECH(1,1) by imposing certain restrictions on its parameters; the restrictions 
are linear and very simple for four specifications, but non-linear in the fifth 
case. The prior distributions for the four simpler models (M3, M4, M5, M6) are 
defined as the appropriate conditional distributions from the prior distribution in 
M1. Only for the last model, M7, the prior distribution is elicited separately, 
without any use of conditioning. The five models (M3–M7) as well as the deci-
mal logarithms of the Bayes factors in favour of M1, log10(BB1j) for j=3,...,7, are 
shown in . Table 2
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 First we mention the t-VECH(1,1) specification with zero restrictions on  
α and λ, i.e. the most richly parameterised model considered by Osiewalski and 
Pipień (2003). Since in M1 zero values of α are completely improbable a poste-
riori, it is not surprising that the Bayes factor of M1 against M3 is so high. The 
next model is the conditionally normal VECH(1,1) specification, N-VECH(1,1) 
or M4, obtained from M1 through conditioning on ν=+∞ (and thus loosing one 
free parameter). 
 Another simplification amounts to setting a2j= b2j=0 j=1,2,3, in (4). This 
leads to M5, the t-VECH(1,1) model with constant conditional covariance, equal 
to ν(ν – 2)–1a20 for all t. In its k-variate version this model describes εt with 
2+(1+2k)k(k+1)/2 unknown parameters (17 free parameters when k=2). Of 
course, such a specification induces variable conditional correlations (except for 
a20=0) and thus is very different from M2, the model with constant conditional 
correlations. M4 and especially M5 fit the data worse than M1, but not as poorly 
as M3.  
 The fourth simplification, defining M6, assumes bij=0, i, j = 1,2,3, in (4). 
This leads to the t-VechARCH(1) or t-VECH(1,0) specification with 
1+[1+k(k+1)/2]k(k+1)/2 (13 for k=2) free parameters describing εt. The 
ARCH(1) structure does not seem enough for our bivariate series, which re-
quires the dependence of conditional covariance matrix on the more distant past 
of the series, which is assured by the GARCH(1,1) structure. 
 All four simplifications described above have (in their k-variate versions) 
too many parameters to be of practical use for k>2; the number of parameters in 
M3, M4 and M6 is O(k4), similarly as in M1, and in M5 it is a third order polyno-
mial of k. Now we consider a much more sophisticated simplification, where 
this number is only O(k2). This parsimonious model, M7, is a simple special case 
of the elegant multivariate GARCH specification proposed by Baba, Engle, 
Kraft and Kroner (1989), and thus called BEKK in the literature. Engle and 
Kroner (1995) discuss general BEKK formulations and their equivalence to 
VechGARCH models. We consider a simple t-BEKK(1,1) specification where 
the conditional distribution of εt (given its past, ψt-1) is Student t with zero loca-
tion vector, BEKK-type inverse precision matrix Ht and unknown degrees of 
freedom ν > 2, i.e. 
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with H0 = h0 I2 and h0 treated as an additional parameter. Both the degrees of 
freedom parameter and h0 are a priori independent of the other parameters and 
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fo  pr onllow the same ior distributi s as in the previous models. The other parame-
rs are all independent a priori and with the following prior distributions: 

 the general (2x2) matrix B consisting of bij. In the k-variate ver-
ion, this model describes ε  using 2+k(k+1)/2+2k2 free parameters (13 parame-

Tabl mpli
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 )1;5.0(~11 Nc , )1,0(~12 Nc , )1,0(~21 Nc , )1;5.0(~22 Nc , 
 
truncated by the restrictions of the positive semi-definiteness of the symmetric 
(2x2) matrix A consisting of aij and the stability of the general (2x2) matrix C 
consisting of cij (all eigenvalues of C lie inside the unit circle). There are no 
restrictions on
s t
ters for k=2). 
 

e 2. Si fications of the t-VECH(1,1) specification (M1). 

Model Description Log10(B
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 Since M7 is much better than M2–M6, and about 2–3 orders of magnitude 
better than M1, let us comment on the relation between M7 and M1. In spite of 
formal incompatibility of their prior specifications, both models lead to almost 
the same posterior distributions of quantities of interest (common parameters or 
conditional covariances and correlations) and to the same predictive results. 
Osiewalski and Pipień (2001) show that the simple BEKK(1,1) error process 
can be obtained from Vech-GARCH(1,1) in 64 alternative ways, each time by 
imposing 10 non-linear restrictions on aijs and bijs in (4). Using a Lindley type 
test based on the approximate Normality of certain functions of basic parame-
ters in the t-VECH(1,1) model (with no exogenous variables), they conclude 
that the data set analysed here does not give clear support to the simple BEKK 
specification for the disturbances, although it is not rejected either. This very 
weak conclusion, based on the analysis of the posterior distribution in the  
t-VECH(1,1) model, is quite different from the reasoning based on the posterior 
odds ratio, which favours parsimony and leaves no doubt about the superiority 
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of the t-BEKK(1,1) error structure. Our data favour the t-BEKK(1,1) model 
over all the alternatives considered so far. It appears as flexible as the 
t-VECH(1,1) specification, leading to virtually the same posterior inference on 
quantities of interest, but it has much less free parameters. In the next subsec-
tion we show consequenc

 

es of further simplifications of M7. The main question 
 whether reducing the number of free parameters in M7 can increase the mar-is

ginal data density value. 
 
3.3. Simplifications of t-BEKK(1,1) 
 
 There are two natural reductions of M7. One is the t-BEKK(1,0) model, M8, 
which appears as a result of imposing zero restrictions on all cijs in (5), the other 
is the N-BEKK(1,1) specification, M9, obtained by taking the limit ν=+∞ for 
the degrees of freedom parameter. The third model, N-BEKK(1,0) or M10, re-
sults from jointly imposing all these restrictions. The prior distributions for all 
three simpler models (M8, M9, M10) are defined as the appropriate conditional 
distributions from the prior distribution in M7. Table 3 presents the three models 
as well as the decimal logarithms of the Bayes factors in favour of M7, log10(BB

 

K(1,0) is about 6 orders of magnitude worse 

ur of M7 are so high that this particular specification would 
ceive practically all the posterior probability mass under any reasonable prior 

Tabl ati (1 M7). 
 

Model Description 7j) 

7i) 
(i=8,9,10), calculated using the N-R method. Not surprisingly, conditional nor-
mality of the error process is strongly rejected by the data, which is in full ac-
cordance with the marginal posterior distribution for the degrees of freedom 
parameter ν  in M7 (most of the posterior mass is concentrated in the interval 
[3; 6.5]). As regards the reduction of M7 to M8 (a model with an ARCH(1) 
structure, Student t conditional distribution, and only 1+k(k+1)/2+k  free pa-
rameters for ε

2

t, i.e. 8 if k=2), t-BEK
than t-BEKK(1,1), about 3–4 orders of magnitude worse than M1, but slightly 
better than M6; see also Table 4.   
 The overall qualitative conclusion (based on the N-R estimates of the mar-
ginal data density values) is that M7, i.e. the t-BEKK(1,1) specification (with 
free α and λ), is the best model among all 10 models under consideration. The 
Bayes factors in favo
re
model probabilities. 
 

e 3. Simplific ons of the t-BEKK ,1) specification (

log10(B
8M  t-BEKK(1,0) t-BEKK(1,1) with c 0 (i,j=1,2) in (5)  ij = 6.05 

9M  N-BEKK(1,1) t-BEKK(1,1) +∞→ν  6.82 3

10M  N-BEKK(1,0) N-BEKK(1,1) with =0 (i,j=1,2) in (5) 39.35  ijc

Priors obtained through conditioning   
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Table 4. Logs of Bayes factors in favour of t-BEKK(1,1). 
 

 With exogenous variable No exogenous variable 

Model Number of 
parameters Rank )(log 710 iB  Number of 

parameters Rank 
)(log 710 iB

 

7M , t-BEKK(1,1) 23 1      0 19 1    0 

1M , t-VECH(1,1) 33 2 2.52 29 2 4.50 

8M , t-BEKK(1,0) 17 3 6.05 14 3 6.22 

6M , t-VECH(1,0) 23 4 6.94 19 4 10.74 

5M , t-VECH(1,1) 
ConstCovar. 

27 6 25.25 23 5 11.53 

2M , t-ConstCor(1,1) 19 7 32.15 15 6 27.84 

9M , N-BEKK(1,1) 22 8 36.82 18 7 44.53 

10M , N-BEKK(1,0) 17 9 39.35 13 8 47.42 

4M , N-VECH(1,1) 32 5 10.16 28 9 48.10 

t-VECH(1,1) no exo 29 10 84.49 see M1 – – 

 
3.4. Stability of model comparisons 
 
 In this subsection we discuss the stability of Bayes factors and model ranks 
with respect to the assumption α=λ=0, i.e. the lack of the exogenous variable 
and the ECM term. Table 4 presents the decimal logarithms of the Bayes factors 
in favour of the t-BEKK(1,1) model (M7), i.e. the values of log10(BB7i). The Table 
also shows the total number of free parameters of each specification, including 
common δ, α, λ and R from (1). While the Bayes factors (obtained in two cases) 
can be very different, the resulting model ranks are similar enough – they indi-
cate the leading position of the t-BEKK(1,1) specification.  
 The results in Table 4 were obtained under specific proper prior distribu-
tions over parameter spaces of particular models. These priors are consistent 
with our prior knowledge and not too informative. When we make the priors 
much more diffuse, the marginal data density values for reasonable models 
change by about 2 orders of magnitude, which should be compared to the huge 
distance between the best and the worst specifications. However, any further 
sensitivity analysis was too costly in terms of computational time and effort.  
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4. Concluding remarks 
 
 Introducing the exogenous DEM/USD exchange rate (through our condi-
tional ECM model) has almost no effect on the results of the Bayesian compari-
son of competing bivariate GARCH error processes for the pair of growth rates 
of PLN/USD and PLN/DEM. Obviously, the presence of DEM/USD helps 
enormously in explaining the modelled growth rates and thus reduces the unex-
plained volatility. This does not mean, however, that we suggest using such 
relevant exogenous variables (and conditional models) in predictive analyses 
like option pricing or building dynamic hedging strategies. Exogenous variables 
are very useful in explaining volatility ex post, but are uncertain ex ante. Hence 
it seems reasonable to base predictive analyses on good models of marginal 
processes for the forecasted financial instruments. For our data set and class of 
models, the simple VAR(1) – t-BEKK(1,1) specification considered by Osiew-
alski and Pipień (2003) seems a reasonable approximation of the marginal 
bivariate process generating PLN/USD and PLN/DEM.  
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