1. Introduction

The main goal of this paper is an application of Bayesian inference in testing the relation between risk and return of the financial time series. On the basis of the Intertemporal CAPM model, proposed by Merton (1973), we built a general sampling model suitable in analysing such relationship. The most important feature of our model assumptions is that the possible skewness of conditional distribution of returns is used as an alternative source of relation between risk and return. Thus, pure statistical feature of the sampling model is equipped with economic interpretation. This general specification relates to GARCH-In-Mean model proposed by Osiewalski and Pipień (2000).

In order to make conditional distribution of financial returns skewed we considered a constructive approach based on the inverse probability integral transformation. In particular, we apply Beta distribution transformation with two free parameters; see Jones and Faddy (2003).

Based on the daily excess returns on the Warsaw Stock Exchange Index we checked the total impact of conditional skewness assumption on the relation between return and risk on the Warsaw Stock Market. Posterior inference about skewness mechanism confirmed positive and decisively significant relationship between expected return and risk.

2. An Approach to Creating Asymmetric Distributions

The unified representation of the univariate skewed distributions that we study in the paper is based on the inverse probability integral transformation;
see Ferreira and Steel (2006) for details. The family $IP = \{e_{\cdot \cdot}, \ v: \Omega \to R\}$, with the representative density $s(\cdot \cdot \cdot | p_{\cdot \cdot})$, is called the skewed version of the symmetric family I (of random variables with unimodal symmetric density $f(\cdot \cdot)$ and distribution function $F_{\cdot \cdot}$, such that the only one modal value is localised at $x=0$) if s is given by the form:

$$s(x| \theta , \eta_{\cdot \cdot}) = f(x| \theta) \cdot p(F(x| \theta) | \eta_{\cdot \cdot})$$, for $x \in R$.}

(1)

The asymmetric distribution $s(\cdot \cdot \cdot | p_{\cdot \cdot})$ is obtained from $f(\cdot \cdot)$ by applying the density $p(\cdot \cdot)$ as a weighting function. Within the general form (1) several classes of distributions P have been imposed on some specific families of symmetric random variables; see Pipie (2006) for a review. The most important feature of our approach is, that uniform density, namely a, given by the form:

$$\theta = \left[\alpha + E(z_{\cdot \cdot}) \right] h_{\cdot \cdot}^{0.5} + u_{\cdot \cdot}$$

where $u_{\cdot \cdot} = z_{\cdot \cdot} - E(z_{\cdot \cdot}) h_{\cdot \cdot}^{0.5}$, and $z_{\cdot \cdot}$ are independently and identically distributed random variables with $E(z_{\cdot \cdot}) < + \infty$. The scaling factor $h_{\cdot \cdot}$ is given by the GARCH(1,1) equation; see Bollerslev (1986):

$$h_{\cdot \cdot} = \alpha_0 + \alpha_1 u_{\cdot \cdot}^2 + \beta_1 h_{\cdot \cdot}.$$

where $u_{\cdot \cdot} = z_{\cdot \cdot} - E(z_{\cdot \cdot}) h_{\cdot \cdot}^{0.5}$, and $z_{\cdot \cdot}$ are independently and identically distributed random variables with $E(z_{\cdot \cdot}) < + \infty$. The scaling factor $h_{\cdot \cdot}$ is given by the GARCH(1,1) equation; see Bollerslev (1986):

$$h_{\cdot \cdot} = \alpha_0 + \alpha_1 u_{\cdot \cdot}^2 + \beta_1 h_{\cdot \cdot}.$$

The specific form of the conditional distribution of $y_{\cdot \cdot}$ strictly depends on the type of the distribution of $z_{\cdot \cdot}$. Initially, in model denoted by M_6, we assumed for $z_{\cdot \cdot}$ the Student-t density with unknown degrees of freedom $\nu > 1$, zero mode and unit inverse precision. We denote the value of this density as $f(z|0,1,\nu)$. Given model M_6, $E(z_{\cdot \cdot}) = 0$, $u_{\cdot \cdot} = z_{\cdot \cdot} h_{\cdot \cdot}^{0.5}$, and hence (2) reduces to the simpler form $y = \alpha h_{\cdot \cdot}^{0.5} + u_{\cdot \cdot}$. Let denote by $\theta = (\alpha, \alpha_0, \alpha_1, \beta_1, \nu)$ the vector of all parameters in model M_6. The following density represents conditional distribution of the excess return at time j:

$$p(y_{\cdot \cdot} | y_{\cdot \cdot} \cdot \cdot, \theta, M_6) = h_{\cdot \cdot}^{0.5} f(h_{\cdot \cdot}^{0.5} (y_{\cdot \cdot} \cdot \cdot - \alpha h_{\cdot \cdot}^{0.5}) | 0,1,\nu), j=1,2,... .$$
Given model M_0 the expected excess return (conditional to the whole past ψ_{j-1}) is proportional to the square root of the inverse precision h_j:

$$E(y_j | \psi_{j-1}, \theta, M_0) = \alpha h_j^{0.5}. \quad (3)$$

The parameter $\alpha \in \mathbb{R}$ captures the dependence between expected excess return and the level of risk both measured by $E(y_j | \psi_{j-1}, M_0, \theta)$ and the scale parameter $h_j^{0.5}$ respectively.

Now, defining model M_1, we introduce skewness into our GARCH-In-Mean model. The resulting asymmetric distribution is obtained by skewing the density of the random variable z_j according to method presented in the previous section. Asymmetric density of z_j takes the form related to the formula (1):

$$p(z | M_1) = f(z|0,1,\nu) \cdot p[F(z) | \eta_1, M_1], \text{ for } z \in \mathbb{R}, \quad (4)$$

where $p(\cdot | \eta_1, M_1)$ defines the skewing mechanism parameterised by the vector η_1, and $F(.)$ is the distribution function of the Student-t random variable with $\nu>1$ degrees of freedom parameter, zero mode and unit inverse precision. For the skewing density p in M_1 we assumed the Beta distribution density with two free parameters $a>0$ and $b>0$:

$$p(y | \eta_1, M_1) = \text{Be}(y|a,b), \quad \eta_1=(a,b), \quad a>0, \quad b>0.$$

In model M_1 the conditional distribution of y_j is heteroscedastic, where time varying dispersion measure h_j, defined by GARCH(1,1) specification, is a function of the whole past of the process. The degrees of freedom parameter $\nu>1$ enable for fat tails of $p(y | \psi_{j-1}, \theta, \eta_1, M_1)$. It is also possible to test whether the dataset supports conditional distribution with Gaussian-type tails (for $\nu \rightarrow \infty$). Asymmetry of the conditional distribution can be captured by the presence of a particular skewing mechanism. If $a>b$ ($a<b$), then the conditional distribution is skewed to the left (right), while in case $a=b=1$ the skewed density in (4) reduces to the simple symmetric case. Consequently restriction $a=b=1$ nests M_0 in M_1. Additionally, skewness of the distribution of z_j in M_1 generates nonzero expectation $E(z_j) < +\infty$, hence:

$$E(y_j | \psi_{j-1}, \theta, \eta_1, M_1) = [\alpha + E(z_j)]h_j^{0.5}, \text{ for } E(z_j) \neq 0,$$

and conditional skewness of excess returns y_j in M_1 can be interpreted as an additional source of the relationship between risk and return. Our idea fully corresponds to Harvey and Siddique (2000), who emphasize, that systematic skewness is economically important and governs risk premium.

4. Empirical Analysis

In this part we present an empirical example of Bayesian comparison of all competing specifications. We also discuss the results of the total impact of the conditional skewness assumption on the relationship between risk and return on the Warsaw Stock Exchange (WSE). Our dataset was constructed on the basis
of \(T=2144 \) observations of daily growth rates, \(r_j \), of the index of the WSE (WIG index) from January 06, 1998 till July 31, 2006. The risk free interest rate, \(r_j^f \), used in excess return \(y_j \), was approximated by the WIBOR overnight interest rate (WIBOR O/N instrument). Our empirical results remained practically unchanged for \(r_j^f \) calculated on the basis of the middle and long term WIBOR interest rate and also in the case \(r_j^f = 0 \) for each \(j \).

Table 1 presents decimal logarithms of the marginal data density value, as well as the posterior probabilities of \(M_0 \) and \(M_1 \). The substantial data support is attached to model \(M_1 \), making the case of conditional symmetry \(f \) rather improbable in the view of the data. Comparing posterior properties of \(\alpha^+ E(z_j) \) in both models, we checked the empirical importance of conditional skewness (imposed in \(M_1 \)) on the relationship between risk and return. Initially, given \(M_0 \), \(E(z_j)=0 \), and the whole information about relative risk aversion coefficient is reflected in parameter \(\alpha \), see (3). Just like many other researchers we obtained positive, but rather weak relationship between expected excess return and the level of risk. The posterior probability \(P(\alpha>0|M_0,y) \) equal 0.92 leaves considerable level of uncertainty about the true strength and the sign of tested relation. However, in case of model \(M_1 \), the posterior probability of the positive sign of \(\alpha^+ E(z_j) \) is greater than 0.99, leaving no doubt about the sign of the relationship. Hence, we restored the positive sign of the relationship, by imposing a particular skewing mechanism on the conditional distribution of excess return. Beta distribution transformation, applied in \(M_1 \), seems to be a proper model component, making conditional distribution of \(y_j \) more sensitive to information about risk premium contained in the dataset.

Table 1. Decimal logarithms of the marginal data density values, posterior probabilities of competing specifications, and posterior analysis of the impact of the conditional skewness assumption on the relation between risk and return

<table>
<thead>
<tr>
<th></th>
<th>(M_0) conditional symmetry and hence: (E(z_j)=0)</th>
<th>(M_1) skewness imposed by Beta density with 2 parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log p(y</td>
<td>M_i))</td>
<td>-1559.06</td>
</tr>
<tr>
<td>(P(M_0</td>
<td>y), i=0,1)</td>
<td>0.1829</td>
</tr>
<tr>
<td>(\alpha^+ E(z_j))</td>
<td>0.0483</td>
<td>0.2148</td>
</tr>
<tr>
<td>(P(\alpha^+ E(z_j)>0</td>
<td>M_0,y))</td>
<td>0.0337</td>
</tr>
<tr>
<td></td>
<td>0.9201</td>
<td>0.9972</td>
</tr>
</tbody>
</table>

Figure 1 presents the plot of the posterior mean of the skewing mechanism in model \(M_1 \). The qualitative analysis of the shape of the density \(p(\cdot | \eta, M_1) \) enables to identify the sources of skewness of the conditional distribution of \(y_j \) supported by the dataset. As seen from the figure, the considerable amount of skewness is located in the tails of the density \(p(y_j | \psi_{j1}, \theta, \eta, M_1) \). It is clear, that skewness is forced by subtle distinction between left and right tail of the condi-
tional distribution of excess return y_j. The skewing mechanism $p(y|\eta_1)$ makes conditional distribution of excess returns more leptokurtic, as the function $p(.|\eta_1)$ has its extremes on the bounds of the interval $(0,1)$. Since the global extreme value of $p(y|\eta_1)$ is reached at $y=0$, the skewing mechanism forces left conditional asymmetry in M_1.

Figure 1. The plot of the posterior mean of skewing mechanism $p(.|\eta_1)$ (grey plot), together with the plot depicting the case of symmetry (black plot of the uniform density over the unit interval)

References

