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1. Introduction 
 In the scientific research as well as in everyday life we can see a tendency to 
averaging many of the observed values. However, we could point out many 
cases where centrality measures are improper. In the case of events with ex-
treme size the Extreme Value Theory (EVT) is appropriate. The methods of 
estimation in the EVT can be divided into two groups: nonparametric and para-
metric ones. The subject of further analysis in this paper is the Peaks over 
Threshold (POT) method, which belongs to the parametric group of the meth-
ods. The main aim of this paper is to present the application of the Extreme 
Value Theory in a risk analysis. We put forward a thesis that GARCH and SV 
models with application of the EVT can provide better estimation of the risk 
measures for financial time series, then standard volatility models. 

2. The Peaks over Threshold Method in the Extreme Value Theory 
 The Peaks over Threshold method assumes that a given sequence of i.i.d. 
observations  comes from unknown distribution function , where 
we are interested in excesses over a high threshold value . Conditional excess 
distribution function (cedf)  is defined as  

, where  is a random variable,  is a given threshold, and 
 is the excess (McNeil, Frey, 2000). The distribution  can be writ-

ten as: 
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The realizations of the random variable  lie between 0 and , therefore the 
estimation of in this interval generally poses no problems. The distribution 
form  could be found in accordance with the following theorem.  

Theorem 1 (Pickands, 1975; Balkema, de Haan, 1974). 
For a large class of underlying distributions , the conditional excess distribu-
tion function , for  large, is well approximated by  

, where 

 (2) 

for  if  and  if , where  is gener-
alized Pareto distribution. The POT method then works in the following steps: 

- Select a high threshold  for a given sample .  

- Chose  i.e. the number of exceeding observations  

denoted as .  

- Fit  to the excesses  to obtain estimates of  and . 
(Beirlant, Mattys (2001)). 

 According to the Pickands-Balkema-de Haan theorem, for , we can 
use the tail estimate  to approximate the dis-

tribution function . It can be shown that  is also generalized Pareto 
distribution, with the same shape parameter , but with scale and location pa-

rameters, correspondingly equal:  and 

. Thus, the POT estimator of  is obtained by 

inverting the formula for . Then substituting unknown parameters of the 
GPD by estimates , we get: 

 (3) 

 If  is the number of exceedances of the threshold  and  is the total 
number of realizations that we have from the distribution , the quantile esti-
mator is: 
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 (4) 

where  is close to 1. An important problem is the choice of the threshold , 
because it reflects the values of estimated parameters. It is suggested in the the-
ory, that the choice should be based on the compromise between bias and vari-
ance. In the case of higher level of threshold, we should expect to get less bias. 
On the other hand we get less excesses that result a higher variance. 

3. Value-at-Risk and Expected Shortfall in the Extreme Value 
Theory 

A Value-at-Risk in the EVT for the Peaks over Threshold method is equal: 

, (5) 

where  is a tolerance level. However the value-at-risk often fails, that is why 
an alternative risk measure called the Expected Shortfall (ES) was developed. 
To construct the expected shortfall, Artzner et al. (1998) defined a risk measure 
by means of four axioms. A risk measure that is monotonic, subadditive, posi-
tively homogeneous and translation invariant is called a coherent risk measure. 
From a coherency point of view, the VaR generally is not a risk measure, be-
cause it does not hold subadditivity axiom. From the theorem 1, we know, that 
the conditional excess distribution function for a threshold  is equal 

. If the threshold is equal so cedf with this threshold is 
also the generalized Pareto distribution (GPD) with the same shape parameter, 
but different scale parameter. In the consequence of the equation 

, we obtain the following formula: 

 (6) 

By noting, that for  the mean of the distribution is equal 
, we can retrieve the Expected Shortfall for the 

Peaks over Threshold method: 

 (7) 

 The Expected Shortfall is defined as , i.e. the 
average loss under condition, that VaR will be exceeded. Dowd (2002) pre-
sented a way to estimate the ES, as the weighted average of the tail VaRs. For 
backtesting we used three tests: the failure test , the mixed Kupiec-test 
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 (Haas, 2001) and the test of independence  (Christoffersen, 1998). 
However these methods do not give the opportunity to create a ranking of the 
models, that is why Lopez (1999) proposed to use the loss function criterion. 
Developing the idea, Angelidis and Degiannakis (2006) pointed out two draw-
backs of Lopez’s approach. Firstly, a model that does not generate any violation 
is recognised as the best. Secondly, a return  should be compared with the 
ES, because the VaR does not give any indication about the size of the expected 
loss. Therefore they proposed the following loss function: 

 (8) 

 (9) 

To judge which model is the best, we compute mean absolute error (MAE) 

, and mean squared error (MSE) , where  

is the number of the forecasts. Then the loss function  for each model is 
constructed as the sum of these errors (Angelidis, Degiannakis, 2006).  

4. The POT Method with Application of the Volatility Models 
 The existing approaches for estimating the profit/loss distribution of a port-
folio of financial instruments can be schematically divided into three groups: 
non-parametric historical simulation methods, parametric methods based on 
volatility models and methods based on the Extreme Value Theory. McNeil and 
Frey (2000) joint all these three methods to remove their drawbacks and get out 
their best features. We assume that  is a time series representing daily obser-
vations of log return on a financial asset price, which are given by 

, where  is a white noise process with zero mean, unit variance 
and the marginal distribution function . We assume that  is the ex-
pected return and  is the volatility of the return. To implement an estimation 
procedure for the process , we need to choose a dynamic conditional mean 
as well as a conditional variance model. McNeil and Frey defined simple risk 
measures forms for one day horizon with relation to process  as: 
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where  is the  quantile of  and  is the corresponding 
expected shortfall. This approach fits a volatility model to returns. Firstly, we 
estimate  and , and calculate model’s standardized residuals. Secondly, 
we apply the Extreme Value Theory to estimate the  and  with 
the use of the POT method based on the standardized residuals. In this method 
we stand in front of the problem to choose the number of extremes , that we 
take to the estimation. Many authors have suggested several solutions but none 
of them has been universally adopted. 

5. Simulations Results 
 The subject of simulations is the comparison of the estimated value-at-risk 
and expected shortfall measures for chosen volatility models with the models 
enriched by application of the EVT. The essential aspect of the comparison was 
to choose the best model based on the loss function proposed by Angelidis and 
Degiannakis (2006). In the simulations the SV model with Gaussian distribution 
and the GARCH model with Gaussian and t-Student error distributions were 
used. We have chosen the SV and GARCH models because they represent the 
most standard volatility models. The parameters were estimated with the maxi-
mum likelihood method in the case of the GARCH models and the quasi-
maximum likelihood method in the case of the SV models. In the tables 1 and 2 
the results of simulation carried out on daily data are shown. The time series 
used in simulation comprise 3000 observations (daily data: 07.11.1994 – 
31.10.2006). We used 10 financial time series that represent the stock exchange 
returns and the foreign exchange rates. The results were similar for all time 
series, so we decided to show just part of them to save space1. For each time 
series a thousand VaRs and expected shortfalls were estimated, where number 
of extremes . To compute the ES for the volatility models we used 
Dowd’s approach (Dowd (2002)), i.e. where 1000 VaRs were estimated to 
compute one expected shortfall. As the result the smallest values of the loss 
function occurred for models where the EVT was applied. Furthermore the SV-
POT model is usually better for the stock exchange returns and the GARCH-
POT model for the foreign exchange rates. We should draw our attention to the 
fact that the number of violations in the case of the EVT models is usually less 
then the expected one, whereas for the standard volatility models the number of 
violations is greater. In the case of the volatility models with the EVT it could 
be found this interval of  (number of extremes) values where the  statis-
tics is considerably lower, but on the other hand the loss function is slightly 
higher. We should decide between the model that has better properties in the 
light of backtesting statistics and the model that better estimates the VaR and 

                                                 
1 Other findings are available upon request. 
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ES (lover loss function). We have decided to show the models characterized by 
the smallest values of the loss function. In the chart 1 and 2 the VaRs and the 
Expected Shortfalls defined according to the SV and SV-POT models with sig-
nificance level  for DAX index are presented. The SV-POT models 
considerably better estimate log-returns in the cases, where market disturbances 
are significant. Second important property that could be seen in the case of the 
SV-POT models (generally models with the EVT) is that the VaR estimations 
are close to the ES values, which cannot be said about those models where the 
EVT was not applied. We achieved similar results for other stock returns (also 
from the Polish stock market), which were presented in the Polish edition of this 
paper (Osińska, Fałdziński, 2007). From the empirical results, it appears that the 
volatility models with the Extreme Value Theory better estimate the expected 
values of future returns, which can be very useful in the case of shock events.   
 

 
Figure 1. VaR and ES estimate from SV-POT model at confidence level  for 

DAX index  

 
Figure 2. VaR and ES estimate from SV model at confidence level  for DAX 

index  
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Table 1. Simulation results for DAX and USD-JPY index (daily data: Nov. 7, 1994 to 
Oct. 31, 2006, number of observations = 3000, number of iterations 1000) 

DAX, α = 0.05 
Model k N LRuc LRindK LRindCH LF Ranking 

GARCH - 52 0.08 80.53 0.61 0.09632 5 
GARCH TS - 53 0.19 81.55 0.50 0.13176 6 

SV - 42 1.42 45.33 0.79 0.02445 2 
GARCH-POT 43 66 4.92 103.93 0.64 0.08164 4 

GARCH-POT TS 38 67 5.52 104.78 0.53 0.08105 3 
SV-POT 25 10 49.47 56.40 2.97 0.00467 1 

DAX, α = 0.01 
Model k N LRuc LRindK LRindCH LF Ranking 

GARCH - 12 0.38 27.48 0.29 0.02371 4 
GARCH TS - 10 0.00 21.91 0.20 0.01585 3 

SV - 17 4.09 28.82 4.68 0.00687 2 
GARCH-POT 43 17 4.09 41.18 0.59 0.02831 6 

GARCH-POT TS 38 14 1.44 1.44 0.03 0.02527 5 
SV-POT 245 4 4.71 4.44 0.03 0.00057 1 

USD-JPY, α=0.05 
Model k N LRuc LRindK LRindCH LF Ranking 

GARCH - 17 22.34 24.50 0.80 0.0179 4 
GARCH TS - 21 18.04 26.62 1.08 0.0392 6 

SV - 64 11.63 96.92 0.04 0.0203 5 
GARCH-POT 65 12 36.70 32.98 0.30 0.0027 2 

GARCH-POT TS 45 16 38.70 35.98 0.35 0.0026 1 
SV-POT 110 24 7.04 27.18 2.38 0.0103 3 

USD-JPY, α = 0.01 
Model k N LRuc LRindK LRindCH LF Ranking 

GARCH - 1 13.48 11.11 0.00 0.00080 4 
GARCH TS - 1 13.48 11.11 0.00 0.00055 3 

SV - 43 76.06 98.45 3.64 0.01465 6 
GARCH-POT 34 1 13.48 12.11 0.00 0.00022 1 

GARCH-POT TS 120 1 13.48 13.57 0.00 0.00045 2 
SV-POT 112 18 10.84 32.08 0.99 0.00588 5 

Notation: – number of extremes taken to estimation for models with EVT, – number of violations 
when return is higher then VaR, – failure test statistic, – statistic for Kupiec’s test of independ-

ence, – statistic for Christoffersen’s test of independence,  – loss function and  – signifi-
cance level.  

k N
ucLR indLR K

indLR CH LF α
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Table 2. Simulation results (daily data: Nov. 7, 1994 to Oct. 31, 2006, number of obser-
vations = 3000, number of iteration 1000) 

Model ranking according to loss function for α=0.05 

Time series GARCH GARCH TS SV GARCH-POT GARCH-POT TS SV-POT 
DAX 5 6 2 3 4 1 
SP500 5 6 2 4 3 1 
DJIA 4 6 5 2 3 1 
FTSE 4 5 6 3 2 1 

USD-JPY 4 6 5 2 1 3 
Model ranking according to loss function for α = 0.01 

Time series GARCH GARCH TS SV GARCH-POT GARCH-POT TS SV-POT 

DAX 4 3 2 6 5 1 
SP500 2 6 5 4 3 1 
DJIA 2 3 6 4 5 1 
FTSE 3 2 6 5 4 1 

USD-JPY 4 3 6 1 2 5 
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