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1. Introduction 
 An analysis of financial time series volatility is an important issue in mak-
ing many economic decisions. The volatility of high frequency financial series 
changes over time and the periods of the high volatility are clustering. Many au-
thors use GARCH models, introduced by Bollerslev (1986), to capture these 
dependences. GARCH models describe the conditional variance clustering ef-
fect but their forecasts are often overstated (Anderson and Bollerslev, 1998). An 
application of the Markov switching specification to GARCH models can out-
perform forecasts of the standard GARCH structure. The first Markov switching 
model was used by Hamilton (1989) in the analysis of the business cycle. The 
ARCH model with Markov switching (SWARCH) was the first specification in 
this class of models (Hamilton, Susmel, 1994). Next the SWARCH structure 
was extended to GARCH parameters, giving the MS-GARCH model. The Mar-
kov switching GARCH model was characterized by Davidson (1994), Klassen 
(2002) and Gray (1996), and each of them defined an equation of the condition-
al variance in a different way. The conditional variance equation is then ex-
ploited in the estimation of MS-GARCH model parameters.  
 The main purpose of this article is to check whether, a better quality volatili-
ty predictions can be obtained from MS-AR-GARCH than from AR-GARCH 
models. At first the estimation of those types of models has been carried out for 
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the investigated series. Next, having well-estimated models, one-day predictions 
have been pointed out for the future thirty sessions. The following step of the 
research was calculating the ex post prediction error, in the form of RMSE, in 
order to compare the prediction properties of the both analyzed types of models. 

2. MS-AR-GARCH Model 
 First of all, AR-GARCH and MS-AR-GARCH1 models differ between 
themselves in the conception of a volatility clustering explanation. The volatili-
ty in AR-GARCH models is described by a consideration of previous volatility 
levels (t-1). Therefore, this kind of a specification characterizes the volatility 
clustering effect quite well, when periods of a low variance follow long periods 
of a high variance. In case of MS-AR-GARCH modeling the volatility cluster-
ing is discussed as a result of staying in a one state for some time and then vio-
lent switching to another state. Because of the r states occurrence, thereare r eq-
uations of the conditional variance, so it is called a mixture of distributions. 
This property allows to characterize a volatility clustering in financial time se-
ries as well as AR-GARCH models. However the Markov switching structure 
should provide a better forecast abilities in comparison to AR-GARCH model.  
 The Markov switching MS-AR-GARCH model is given by: 
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where  

ty  -the empirical value of the process in the t-th moment, 

1−tY  - process information from the past to the (t-1)-th moment, 
( ) ( ) ( ) ( ) ( )[ ]iiii

ii
i dfp ,,,, 110 γββθ = - the estimated parameters vector in i state,  

ist =  -the state of the process in the t-th moment, { }ri ,...,2,1∈ . 

 The conditional mean can be described by the autoregressive AR(p) process 
in the t-th moment and for i-th state. AR(p) process can be written as: 

 pttptti
i
t yisyisis −− =++=+== )(...)()( 110 αααμ , (4) 

                                                 
1 The GARCH and the MS-GARCH models were expanded, respectively to AR-

ARCH and MS-AR-GARCH specifications with autoregressive process AR(p), witch 
enable to describe an autocorrelation in time series.  
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and the conditional variance in the t-th moment for i-th state is given by: 
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3. MS-AR-GARCH Model Estimation 
 An estimation of the MS-AR-GARCH model based on Equation (1) is a 
computationally quite difficult. When you need to calculate the conditional va-
riance i

th , for two states and GARCH(1,1) process, you have to consider two 
equations of the conditional variance i

th 1−  depending on ist =−1 . Then for the 
each of variance equations i

th 1−  you have to take into account two equations of 
conditional variance i

th 2−  for the sake of the two states ist =−2 . This pattern is 
done until the 1=t  moment. So it is seen that the number of needed states in-
creases with a number of time series observations. Therefore the estimation of 
this kind of equation becomes unworkable. There are three approaches to solve 
this problem in the literature.  
 The first approach was introduced by Davidson (2004), where the GARCH 
structure is an autoregressive process with infinite number of lags ARCH(∞): 
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An advantage of this solution is that the conditional variance t
ih  depends only 

on state ts -th. 

 The second approach is a proposition of Gray (1996), where lag of condi-
tional variance is the expected value of conditional variances for each state. 
Hence in the case of GARCH model the conditional variance is given by: 
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where ( )1−= tisP t  is a probability that the process in t-th moment is in i-th 
state and the information about the process until (t-1)-th moment is known. 
 The third approach was proposed by Klassen (2002), where the values of 
the conditional variance 2

1
1

1, −− tt hh  are needed. These values in Klassen’s ap-
proach are calculated from equation: 

)()()( 2
2

2101 −−− +=+== tttt
i
t hEisish εββ ,  (9) 

where an expected value )( 2−thE  is calculated by an analogy from Equation (8).  
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 In this paper the Davidson solution was used to define an equation of condi-
tional variance. The parameters of the research model were obtained by the 
maximization of the log-likelihood function,which can be written as2: 
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where 
( )isYyf ttt =− ,| 1  - the density function of a distribution, 

( )tisP t = - probability of the process in t-th moment being in i-th state and in-
formation about the process until t-th moment is known, 

ijp - the conditional probability of the process switching from the i-th state to 
the j-th state (the transition probability) . 
 The return rate forecasts and the conditional variance forecasts for k periods 
were calculated from equations given by:  
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where the conditional probabilities ( )TisP kT =+  are received recursively from 
Equation (11). 

4. The Financial Time Series Results  
 The empirical analysis refer to the daily return rates of the companies 
quoted on the Warsaw Stock Exchange, which create WIG20 index3. The values 

                                                 
2 The log-likelihood function in (10) was constructed for two states but it can be 

done for any number of states. 
3 To estimate the AR-GARCH and the MS-AR-GARCH models, 12 from 20 com-

panies of the WIG20 index were chosen. It has been the consequence of the assumption, 
that at least 1000 observations of a time series should be taken into consideration. The 
analyzed series come from the period from November 17, 2000 (the date of implement-
ing WARSET system) to March 30, 2007. The logarithmic rates of return have been 
multiplied by 100. 
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of distribution’s characteristics and some tests have been presented in Table 1. 
These results verify a time series properties for the selected stock market returns 
(Agora S.A., Telekomunikacja Polska S.A., KGHM Polska Miedź S.A., PKN 
Orlen S.A.4). All series have increased kurtosis (more than 3) and the hypothe-
sis of the normal distribution in accordance with Jarque-Bera's test results is re-
jected. The ARCH effect occurs in every time series, what is shown by the 
Ljung-Box test for the squares of return rates. According to Ljung-Box test in 
the case of Agora S.A. and KGHM S.A., the autocorrelation phenomenon ap-
pears. 

Table 1. Distribution characteristics of  rates of return for the chosen series 

Distribution’s characteristics AGORA TP KGHM PKN  
Orlen 

Standard daviation 2.1748 2.1457 2.54483 1.8936 
Assymetry 0.0739 0.1762 -0.2252 0.1448 
Kurtosis 4.8796 4.0895 4.925 4.189 

Jarque-Bera test 236.83 
[0.000] 

87.36 
[0.000] 

260.57 
[0.000] 

99.83 
[0.000] 

Ljung-Box test (autocorelation) - 
( )20Q  

33.24 
[0.032] 

19.69 
[0.477] 

37.11 
[0.011] 

20.77 
[0.410] 

Ljung-Box test (effekt ARCH) -
( )20Q  

191.30 
[0.000] 

330.54 
[0.000] 

140.86 
[0.000] 

53.62 
[0.000] 

Source: Calculations in TSM programme, p-values have been presented in brackets. 

 The results5 of the estimation for the AR(p)-GARCH(p,q) models are pre-
sented in Table 2. The estimated parameters are statistically significant for all 
time series. While analysing the residuals it is worth to pay an attention on the 
increased kurtosis in residual processes and on the fact, that according to Jar-
que-Bera's test for null hipothesis, normality of residual distribution is rejected. 
This is the result of the conditional t-Student distribution of residuals, which 
with low level degree of freedom have higher curtosis in comparison to the 
normal distribution. The ARCH effect and the autocorrelation phenomenon 
have been successfully eliminated in the case of the all series. The Schwarz in-
formation criterion and RMSE values are presented in the last two rows of Ta-
ble 2. The RMSE values were calculated on the basis of the obtained predic-
tions.  

                                                 
4 Because of the limited spare, only the results of the chosen 4 series from the ac-

quired results for 12 companies have been presented.  
5 Both the AR-GARCH and the MS-AR-GARCH models were estimated with the 

assumption of the normal distribution or of the t-Student distribution of residuals.  
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Table 2. Results of he AR(r)-GARCH(p,q) estimation  
Parameters AGORA TPSA KGHM PKNOrlen 

0α  - - 0.13295 
[0.023] - 

1α  0.09884  
[0.000] - 0.04839 

[0.054] - 

0β  1.15782 1.03842 1.49264 1.3602 

1β  0.08046  
[0.007] 

0.05786 
[0.000] 

0.04725 
[0.000] 

  0.03674 
[0.001] 

1γ  0.89019  
[0.000] 

  0.92608 
[0.000] 

0.92901 
[0.000] 

0.92491 
[0.000] 

df  - 11.90 7.45 10.05 
Assymetry (residual) 0.0097 0.2795 -0.3142 0.1881 
Kurtosis (residual) 4.277 3.6316    4.333 3.9781 

 Jarque-Bera test (residual) 108.59  
[0.000] 

47.40 
[0.000] 

144.68 
[0.000] 

73.16 
[0.000] 

Ljunga-Box test (autocorelati-
on-residual)– Q(20) 

13.205  
[0.868] 

12.9198  
[0.881] 

28.63 
[0.095] 

17.46 
[0.623] 

 Ljung-Box test (effect Arch-
residual)-Q(20) 

17.1686  
[0.642] 

15.3737  
[0.755] 

15.59 
[0.742] 

10.12 
[0.966] 

LL -3425.78 -3404.88 -3680.77 -3261.35 
SC -3440.54 -3419.64 -3702.9 -3276.11 

RMSE  error 10.33 5.94 12.04 3.82 

Source: Calculations in TSM programme, p-values have been presented in brackets. 

 Table 3 presents results of the MS-AR-GARCH model estimation where the 
parameters are statistically significant. The obtained residuals have similar cha-
racteristics to the AR-GARCH models. In the case of the all companies the 
ARCH effect has been eliminated. The Schwarz information criterion and 
RMSE values are presented in the last two rows of Table 3.  

5. Conclusions 
 Analyzing6 the fitting of the AR-GARCH and MS-AR-GARCH models one 
can easily notice the comparable Schwarz information criterion values. This 
means that both models have been fitted similarly to empirical data. Next, com-
paring the values of the RMSE for the examined time series one can ascertain 
that the errors for both types of models are also comparable. It is testified by the 
fact that on the basis of 12 analyzed companies included in the WIG20 index, it 
cannot be ascertained that the MS-AR-GARCH model acquires better volatility 
prediction properties than the AR-GARCH model. 

                                                 
6 The summary presents the results gained from all 12 time series chosen from 20 

companies of the WIG20 index. 
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Table 3. Results of the MS-AR(r)-GARCH(p,q) switching models estimation 
Parameters AGORA TPSA KGHM PKN Orlen 

0α  - - 0.1404   
[0.016] - 

1α  
0.08592  
[0.001] -   0.04817  

[0.055] - 

11p / 12p  0.8969 0.1031 0.9930 0.0070 0.9908 0.0092 0.9836 0.0164 

22p / 21p  0.0419 0.9581 0.0070 0.9930 0.0070 0.9930 0.0085 0.9915 

M
S-

G
A

R
C

H
 

~t
-S

tu
de

nt
 

( )1
0β  2.74468   1.75942 1.40453 1.56296 

( )2
0β  1.01255 1.0982 2.04273 1.69574 

( )1
1β  0.00839   

[0.05] 
0.04358  
[0.011] 

0.03507 
[0.008] 

0.02836  
[0.368] 

( )1
1γ    0.97836 

[0.000] 
  0.9270  
[0.000]  

0.93034 
[0.000] 

0.91998  
[0.000] 

( )1df  - 15.05 7.84 11.56 
( )2df  - - - 12.53 

Assymetry (re-
sidual) 0.0358 0.2341 -0.2858 0.1955 

Kurtosis (resi-
dual) 2.7618 3.3364 4.1235 3.8872 

 Jarque-Bera test 
(residual) 4.1205 [0.127] 22.12 [0.000] 105.79 [0.000] 62.6367 [0.000] 

Ljunga-Box test 
(autocorelation-
residual)– Q(20) 

11.61  
[0.929] 

12.6715  
[0.891] 

28.2988  
[0.103] 

17.00 
 [0.653] 

 Ljung-Box test 
(effect Arch-

residual)-Q(20) 

25.45 
[0.185] 

15.34 
[0.756] 

17.052  
[0.65] 

10.46 
[0.959] 

LL -3400.79 -3399.93 -3675.92 -3260.54 
SC -3426.61 -3425.75 -3709.12 -3290.05 

RMSE  error 9.28 5.83 11.55 3.82 

Source: Calculations in TSM programme, p-values have been presented in brackets. 

 It may be concluded that in the situation of similar models' quality with re-
spect to the description of empirical data, as well as to the volatility predictions 
of financial time series, it would be worth to choose the AR-GARCH model as 
less complicated model. What is also important is the usage of the MS-AR-
GARCH model enables gaining additional information on the transition me-
chanism and dynamics of the process in the each state. Since all models are 
highly stable in regimes, the average time to each regime and the average time 
of process duration can be fixed, what additionally increases the prediction 
properties of Markov model. 
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