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1. Introduction 
 The classical Black-Scholes model assumes that asset returns follow a con-
tinuous diffusion process with constant conditional volatility and constant inter-
est rate. Thus, numerous studies on option pricing have relaxed the unrealistic 
assumptions. Firstly, the assumption of constant interest rate was relaxed to al-
low for stochastic interest rate, as in Merton (1973) or Turnbull and Milne 
(1991). Secondly, the assumption of constant volatility was relaxed. Hull and 
White (1987) was one of the first papers to derive an option pricing formula for 
a European call option in stochastic volatility model. In their model, the interest 
rate is constant and the conditional variance is uncorrelated with the asset price. 
Heston (1993) presented a close-form solution for options on assets with sto-
chastic volatility, constant interest rate, and a non-zero correlation between 
volatility and asset prices. The option pricing model incorporating both stochas-
tic interest rates and stochastic volatility is not often considered in literature. 
Amin and Ng (1993) built the option pricing model which incorporates both a 
stochastic interest rate and a stochastic volatility process for stock returns.  
 The aim of the paper is to check whether allowing interest rates to be sto-
chastic improves forecasting performance of the discounted payoff of options 
on the WIG20 index. We compare the results obtained in the option pricing 
model under stochastic volatility and stochastic interest rate (allowing the inter-
est rate to follow an SV process) with those in constant interest rate model (an 
univariate SV model for the underlying asset). 

                                                 
∗ Research supported by a grant from Cracow University of Economics. 
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The structure of the article is as follows: section 2 consists of a short presenta-
tion of the Bayesian univariate SV model with correlated errors, section 3 in-
cludes a brief presentation of the Bayesian bivariate SV model, section 4 fo-
cuses on the Bayesian forecasting of the discounted payoff of a European call 
option, section 5 presents the posterior results connected with options on the 
WIG20 index, and finally, section 6 incorporates the conclusions. 

2. Bayesian Univariate AR(1)-CSV Model 
 Let xt denote the price of the underlying asset at time t, t = 1, 2, ..., T+s. The 
growth rate yt is defined as yt = 100 ln (xt/xt-1) and modelled using the discrete-
time correlated SV model (CSV) considered by Jacquier, Polson and Rossi 
(2004). The CSV model specifies a log-normal autoregressive process for the 
conditional variance with correlated innovations in the conditional mean and 
conditional variance equations. The univariate AR(1) - CSV model is defined as 
follows: 

ttt yy εδρδ +−+= − )( 1111 ,  (1) 

ttt hu=ε ,  thtt hh ησφγ ++= −1lnln ,  (2) 
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iiN denotes independent, identically and normally distributed. One interpreta-
tion for the latent variable ht is that it represents the random and autocorrelated 
flow of new information into financial markets (see Clark, 1973). Here φ is 
connected with the volatility persistence, σh is the volatility of the log-volatility. 
The above model can pick up the kind of asymmetric behaviour often observed 
in stock price movements, which is known as the leverage effect when the cor-
relation ρ is negative1. Also, the negative value of ρ induces left-skewness in 
the marginal distribution of εt. In order to complete the Bayesian model, we 
have to specify a prior distribution on the parameter space. In this paper we use 
the following prior structure: 

),()()()()(),,,,,( 2
11

2
11 ρσφγρδρσφγρδ hh pppppp = , 

where we use proper prior densities of the following distributions: δ1 ~ N(0, 1), 
ρ1 ~ U(-1,1), γ ~ N(0, 102), φ ~ N(0, 102) I(-1,1)(φ),τ ~ IG(1, 0.005), ψ|τ ~ 
N(0, τ /2), )1(, 22 ρστρσψ −== hh (see Jacquier, Polson and Rossi, 2004).  

                                                 
1 If ρ is negative, then a negative innovation ut is associated with higher contempo-

raneous and subsequent volatilities. On the other hand, a positive innovation ut is asso-
ciated with a decrease in the volatility (see Jacquier, Polson and Rossi, 2004).  
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The prior distribution for δ1 is standardized normal, U(-1,1) denotes the uniform 
distribution over (-1,1). The prior distribution for φ is normal, truncated by the 
restriction that the absolute value of φ is less than one (I(-1, 1)(.) denotes the indi-
cator function of the interval (-1, 1), which is the region of stationarity of lnht). 
The symbol IG(v0, s0) denotes the inverse Gamma distribution with the mean 
s0/(v0-1) and the variance )]2()1/[( 0

2
0

2
0 −− vvs (thus, when ρ = 0, the prior mean 

for 2
hσ  does not exist, but 2−

hσ  has a Gamma prior with the mean 200 and stan-
dard deviation 200). The initial condition h0 is equal to y0

2. These assumptions 
reflect rather weak prior knowledge about the parameters. 

3. Bayesian Bivariate VAR(1)-TSV Model 
 Let now xj,t denote the price of asset j at time t for j = 1, 2 and t = 1, 2, ..., T 
(in this paper x1,t and x2,t are respectively the index level and interest rate at time 
t). The vector of growth rates yt =(y1,t, y2,t)′, each defined by the formula yj,t = 
100 ln (xj,t/xj,t-1), is modelled using the basic VAR(1) framework: 

ttt yRy ξδδ +−=− − )( 1 ,  t = 1, 2, ... , T+s,  (3) 

where T observations are used in estimation, s is the forecasting horizon. In (3) 
δ is a 2-dimensional vector, R is a 2×2 matrix of parameters, and ξt is a bivariate 
SV process. We assume that, conditionally on the latent variable vector Ωt, ξt 
follows a bivariate Gaussian distribution with the mean vector 0[2×1] and the co-
variance matrix Σt, i.e. ),0(~| ]12[ ttt N ΣΩ ×ξ , t = 1, 2, ..., T+s. For the matrix Σt 
the Cholesky decomposition is used (see Tsay, 2002): 

Σt = Lt Gt Lt′, (4) 
where Lt is a lower triangular matrix with unitary diagonal elements, Gt is a di-
agonal matrix with positive diagonal elements: 
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{q21,t}, and {lnqjj,t} (j =1,2), as in the univariate SV specification, are standard 
univariate autoregressive processes of order one, namely  

ttt qq ,1111111,111111,11 )(lnln ησγφγ +−=− − , 

ttt qq ,2222221,222222,22 )(lnln ησγφγ +−=− − , ttt qq ,2121211,212121,21 )( ησγφγ +−=− − , 

where )',,( ,22,21,11 tttt ηηηη =  and ),0(~ 3]13[ IiiNt ×η , Ωt = (q11,t, q22,t, q21,t)′. 

The Cholesky decomposition of Σt requires no parameter constraints for the 
positive definiteness of Σt. The matrix Σt is positive definite if qjj,t > 0 for j = 1, 
2, which is achieved by modelling ln qjj,t instead of qjj,t. If 1|| <ijφ  (i, j=1, 2,  
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i ≥ j), then {ln q11,t}, {ln q22,t}, and {q21,t} are stationary and the SV process is a 
white noise (see Pajor, 2005). We make similar assumptions about the prior dis-
tributions as previously. In particular:  γij ~ N(0, 102), φij ~ N(0, 102)I(-1,1)(φij),  

2
ijσ ~ IG(1, 0.005), lnqii,0 ~ N(0, 102) i, j ∈ {1, 2}, i ≥ j,  q21,0 ~ N(0, 102). For δ 

and R we assume the multivariate standardised Normal prior N(0, I6), truncated 
by the restriction that all eigenvalues of R lie inside the unit circle (similar to 
Osiewalski and Pipień, 2004). The prior distributions are assumed to be inde-
pendent of each other. 

4. Application to Bayesian Forecasting of the Discounted Payoff 
 An important application of the stochastic volatility models is the option 
pricing. The payoff at time T+s of a European call option is given by  

VT+s = max(xT+s – K, 0), (5) 
where K is the exercise price (strike price), xT+s is the price of the underlying as-
set at time T+s (no dividend being paid), s is the time to maturity. The present 
value of payoff considered at time T under stochastic interest rate is2 

)0,max(exp| KxdtrW sT

sT

T
tsTT −⎟

⎠
⎞

⎜
⎝
⎛−= +

+

+ ∫ , (6) 

where rt is the interest rate at time t. This discounted payoff is a random vari-
able as a measurable function of xT+s and rt, t∈[T, T+s], which are random. The 
distribution of WT|T+s is induced by the predictive distributions of xT+s and rt, 
t∈[T, T+s]. The Bayesian approach naturally provides a tool to compute the 
predictive distribution of the discounted payoff, WT+s|T (see Bauwens and Lu-
brano, 1998; Osiewalski and Pipień, 2003). The predictive density of the payoff 
is defined by 

∫ ++ = θθθ dypyWpyWp sTTsTT )|(),|()|( || , 

where y is the sample of returns used for estimation, p(θ | y) is the posterior 
density of the parameters and latent variables of the Bayesian econometric 
model.  
It is important to stress that the specification (1) relaxes the Black and Scholes 
constant volatility assumption. In this case the volatility follows a separate 
process. The specification (3) relaxes the Black and Scholes constant volatility 
and constant interest rate assumptions, furthermore allows the interest rate to 
follow an SV process. In the univariate AR(1)-CSV model the stock price in-
volves two sources of the risk: the stock return risk and volatility risk. Thus, the 
investor incurs the risk from a randomly evolving asset price and the risk of a 
                                                 

2 In a discrete-time model the integral in Equation (6) is replaced by the summation. 
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randomly evolving volatility. Note that in the bivariate VAR(1)-TSV model 
(presented above) there are four sources of the risk: the risk from the asset price, 
the volatility of the underlying asset, the interest rate, and from the volatility of 
the interest rate. It is clear that this model is incomplete. It is well known that in 
an incomplete market there is no unique fair price and no universal pricing algo-
rithm. There are several alternative methodologies which have been proposed as 
pricing mechanisms (see Hobson, 2004 for a review of the methods). In this pa-
per we consider the original probability measure (the physical measure). This 
means that we assume that both the stochastic interest rate volatility and sto-
chastic interest rate, as well as the stochastic asset return volatility have zero 
risk premium. The Bayesian approach takes completely into account the uncer-
tainty, which come from prediction and from the parameters, by construction of 
the predictive distribution of the discounted payoff. The predictive option price 
may be defined as the median of WT|T+s (see Osiewalski and Pipień, 2003). 

5. Empirical Results 
 We use daily observations (closing quotes) of the WIG20 index and 
WIBOR6m (the 6- month Warsaw Interbank Offered Rate) over the period from 
January 2, 2001 to December 31, 2004. The data was downloaded from 
www.money.pl. The dataset of the daily logarithmic growth rates (expressed in 
percentage points) yt consists of 1005 observations (for each series). The first 
observation is used to construct initial conditions, thus T = 1004 (the number of 
modelled observations). We consider all European call options on the WIG20 
index, which were quoted on Warsaw Stock Exchange (WSE) on December 31, 
2004 (at the end of the observed sample). The exercise dates are March 18, 
2005 (i.e. s = 55 trading days) or June 17, 2005 (i.e. s = 115 trading days). As 
the proxy for the unobservable short rate, the 6 month WIBOR rate is used. As 
justified Jiang (1998), and Jiang and Sluis (1999) the use of the 6 month 
WIBOR rate is a compromise between an instantaneous rate (overnight rates) 
and avoiding some of the associated spurious microstructure effects. In the 
VAR(1)-TSV model the first component of the vector yt is the growth rate of 
the WIG20 index, the second one is the growth rate of the WIBOR6m.  
We report in Table 1 the main characteristics of the predictive distributions of 
the discounted payoff for the European call option on the WIG20 index. In the 
univariate AR(1)-CSV model (with constant interest rate), according to the rec-
ommendation of the Warsaw Stock Exchange and the Polish National Deposi-
tory for Securities it was assumed that the risk-free interest rate is 6,5% per an-
num (i.e. r = 6,5% on annual base, see Kostrzewski and Pajor, 2007) 3. 

                                                 
3 The correlation between index returns and volatility in the AR(1)-CSV model is 

insignificantly different from zero. The posterior mean of ρ in the AR(1)-CSV model is 
equal to -0.0018 with the standard deviation 0.1611. Thus, formal Bayesian testing (not 
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Table 1. The predictive characteristics of the discounted payoff. Here W = WT|T+s 
Model  s=55     s=115    

 quantile  
of order: 1700 1800 1900 2000 2100 1800 1900 2000 2100 

 0.05 22.63 0 0 0 0 0 0 0 0 
 0.25 185.07 86.49 0 0 0 63.24 0 0 0 

CSV 0.50 298.84 200.26 101.68 3.1 0 243.04 146.01 48.98 0 
 0.75 419.74 321.16 222.58 124 25.11 441.13 344.1 247.07 150.04 
 0.95 620.00 521.42 422.84 324.26 225.68 785.85 688.82 591.79 494.76 
 IQR 234.67 234.67 222.58 124.00 25.11 377.89 344.10 247.07 150.04 
 Pr(W=0|y)4 0.038 0.117 0.274 0.493 0.706 0.179 0.293 0.429 0.568 
true value of  

discounted payoff 271.11 172.53 73.94 0 0 217.43 120.36 23.30 0 

 quantile  
of order: 1700 1800 1900 2000 2100 1800 1900 2000 2100 

 0.05 47.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 0.25 198.71 100.13 1.55 0.00 0.00 90.21 0.00 0.00 0.00 

TSV 0.50 304.42 205.84 107.26 8.68 0.00 254.82 157.79 60.45 0.00 
 0.75 415.40 316.82 218.24 119.66 21.08 433.38 336.04 239.01 141.67 
 0.95 597.99 499.41 400.83 302.25 203.67 743.07 645.73 548.70 451.36 
 IQR 216.69 216.69 216.69 119.66 21.08 343.17 336.04 239.01 141.67 
 Pr(W=0|y) 0.026 0.094 0.247 0.478 0.709 0.146 0.260 0.404 0.558 
true value of  

discounted payoff 271.07 172.50 73.93 0 0 217.79 120.56 23.33 0 

Quotations on 
December 31,2004  285 200 105 50 15.1 189 119 78 45 

In both models the true values of the discounted payoff are located between the 
median and the quantile of order 0.75 or between the quantile of order 0.25 and 
the median, but in the close neighbourhood of the medians. Also, the observed 
market prices of the options are closed to the medians. It is worth to stress, that 
the inter-quartile range (IQR) indicates huge uncertainty of the future payoff. In 
Figure 1 we present histograms of the predictive distribution of the discounted 
payoff of the European call option with the exercise price K equals 1800 index’s 
points and s = 55. The first bars of graphs denote probability of non-exercise of 
the option. The little red points represent the true values of the discounted pay-
off. They are located between the first quartile and the median of the predictive 
distributions of the discounted payoff. The predictive histograms are character-
ized by huge dispersion and thick tails, thus uncertainty about the future value 
of payoff was very big ex-ante. In the last column in Table 2 we have the aver-

                                                                                                                        
presented here) does not lead to rejection of the hypothesis of a zero correlation be-
tween volatility and index returns. 

4 The settlement prices for derivative securities were equal to 1975 (for s = 55) and 
2024 (for s = 115). 
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age (mean) forecasting errors5 (MFE). The level of MFE in the bivariate 
VAR(1)-TSV model (with stochastic interest rates) is higher than in the univari-
ate AR(1)-CSV model (with constant interest rate). Thus the VAR(1)-TSV 
model performs worse than the AR(1)-CSV model. The empirical results allow 
us to infer that stochastic interest rates may not be important for the forecasting 
of the discounted payoff. It seems that stochastic interest rate has minimal im-
pact on option prices. Surprisingly, the uncertainty of the future value of the 
payoff (measured by IQR) is bigger in the univariate AR(1)-CSV model. 
 

s = 55, K=1800, univariate CSV s = 55, K=1800, bivariate TSV 

 
Figure 1. Histograms of the predictive distributions of the discounted payoff 

Table 2.  The predictive median of WT|T+s minus the true value of the discounted payoff  

Model 
s=55     s=115     
1700 1800 1900 2000 2100 1800 1900 2000 2100 MFE 

CSV 27.73 27.73 27.74 3.10 0.00 25.61 25.65 25.68 0.00 18.14 
TSV 33.25 33.28 33.31 8.68 0.00 36.82 37.11 37.09 0.00 24.39 

6. Conclusions 
 In this paper the bivariate Stochastic Volatility models (with stochastic vola-
tility and stochastic interest rate) and the univariate Correlated Stochastic Vola-
tility model (with stochastic volatility and constant interest rate) are used in 
Bayesian forecasting of the payoff of the European call options on the WIG20 
index. The empirical results indicate that allowing interest rates to be stochastic 
does not improve forecasting performance of the discounted payoff. The true 
values of the discounted payoff (observed ex-post) are located between the first 
quartile and the median of the predictive distribution of the discounted payoff, 
but the predictive distributions of the discounted payoff have such huge disper-
sion that they are hardly informative for the purpose of option pricing. 
                                                 

5 The average forecasting error is defined as: ∑
=

−=
n

i
ii CCnMFE

1

ˆ)/1( , where n is the 

number of options used in the comparison, Ci and iĈ  represents the true value of the 
discounted payoff and the predictive median of the discounted payoff, respectively.  
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