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1. Introduction 
 Granger causality is one of the most important concepts in the analysis of 
dependencies between economic processes. In econometrics, this widely known 
idea is usually applied to linear relationships, represented by VAR models. 
Nonlinear Granger causality may be identified using the Hiemstra and Jones test 
(1994).  
 The aim of this paper is to show how the Hiemstra and Jones test may be 
used for a different purpose, i.e. to detect nonlinear autodependencies in a single 
time series. This concept has been applied to some generated examples and 
financial data. 

2. Testing for Nonlinear Granger Causality 
The definition of Granger causality between two stationary time series is 

formulated in terms of conditional probability distributions (Granger, 1969). It 
says that tX  does not strictly Granger causes  tY , if : 

( ) ( ))...,,()...,,;...,,( 111 −−−−−− = tlytttlyttlxtt YYYFYYXXYF   (1) 

for each lags 1, ≥lylx , where F denotes CDF. When the equality in Equation 
(1) does not hold we say that tX  strictly Granger cause tY . 

 Testing the Granger causality consists in verification of the null hypothesis 
that X does not strictly Granger cause Y . In practice, Equation (1) is not easy 
to apply to, therefore some more operational procedures are developed.  
For example, the Granger causality often becomes restricted to the linear 
framework, where VAR models for investigated data are analyzed.  
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 Baek and Brock (1992) introduced an operational method of testing for 
nonlinear Granger causality. It is based on correlation integral )(εWC , which is 
the probability of finding two independent realizations of the vector W at a dis-
tance smaller than or equal to ε : 

( ) { } ( ) ( ) ( ) ,,, 12212121 dsdssfsfssIWWPC WWW ∫ ∫=≤−= εεε  (2) 

where 21 ,WW  are independent realizations of W , the integrals are taken over 
the sample of W ,  is the supremum norm and ),,( 21 εssI  denotes an indica-

tor function: ( )
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 For fixed lags 1, ≥lylx , denote the lag vectors of tX  and tY , respectively 

by t
lxtX −  and t

lytY − , i.e. ),...,( tlxt
t

lxt XXX −− =  and ),...,( tlyt
t

lyt YYY −− = .  Baek 
and Brock (1992) redefined the idea of Granger nonlinear causality. According 
to their definition tX  does not nonlinearly Granger cause tY , if: 
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 When the equality in Equation (3) does not hold, then knowledge of past X 
values helps to predict current and future Y values. This interpretation of Gran-
ger causality plays a crucial role in the concept presented in Section 3. 
 Let 1C , 2C , 3C  and 4C  denote the following correlation integrals: 
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It can be proved (e.g. Osińska and Orzeszko, 2006) that: 
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 Thus, the null hypothesis of Granger noncausality given by (3) is equivalent 

to the equation
4
3

2
1

C
C

C
C

= . (7) 

 Let consider two time series – )( tx  and )( ty , Tt ...,,2,1= , generated by 
strictly stationary stochastic processes tX  and tY . To verify Equation (7), the 
estimators of the correlation integrals 1C , 2C , 3C  and 4C  need to be calcu-
lated: 
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where Tlylxst ...,,1),max(, +=  and ),(max lylxTn −= . 

 According to the Hiemstra and Jones testing procedure (H–J hereafter), for 
given values of 1, ≥lylx  and 0>ε , under the assumptions that tX  and tY  are 
strictly stationary, weakly dependent and satisfy the mixing conditions of Denk-
er and Keller (1983), if tX  does not strictly Granger cause tY  then: 

( )1,0~
)(4
)(3

)(2
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⎟⎟
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⎝

⎛
−=

εσ
, (9) 

where the definition and the estimator of ),,( εσ lylx  are given in the appendix 
of Hiemstra and Jones (1994). 
  It should be emphasized that the Hiemstra and Jones test identifies depen-
dencies of different types. Therefore, to examine nonlinear causality, first of all, 
the linear relation should be excluded.1  
 Moreover, Hiemstra and Jones recommend to analyze normalized time se-
ries and then, to consider the value of ε  between 0.5 and 1.5. 

                                                 
1 The test is usually applied to the estimated residual series from a VAR model. 
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3. Detection of Nonlinear Autodependencies Using the Hiemstra 
and Jones Test 

 In this paper it is proposed to apply the H–J test in a different way, i.e. to 
detect nonlinear autodependencies in a single time series. To this end, as the 
“causal process” one should take the past realisations of the investigated data. 
This allows to examine an existence of nonlinear autodependencies, which po-
tentially allows to forecast the time series on a base of its past realisations.  
 Precisely, in this paper, such a procedure is realized in the two ways. For the 
each investigated time series, denoted by )( ta , two sets of time series are ana-
lysed: 
A) )( ty – the investigated time series (i.e. tt ay = ) , )( tx – the time series of its 

first lags (i.e. 1−= tt ax ), 

B) )( ty – the time series of observations with even subscript (i.e. tt ay 2= ), 
)( tx – the time series of observations with odd subscript (i.e. 12 += tt ax ). 2 

 In case A, the rejection of  H0 means that forecasts of ta , based on observa-
tions lxttt aaa −−− ,...,, 21 , will be improved, if we take into account also 1−−lxta . 
Since lx≥ 1, it lets us identify autodependencies of at least second order. To find 
out first-order autodependencies the second set of the data, i.e. B, needs to be 
considered. In this case, a  rejection of H0 means that forecasts of ,2ta based 
only on observations lxttt aaa 224222 ...,,, −−−  will be improved, if we use 

lxtlxttt aaaa 221222212 ,,...,, −+−−− . Particularly, when the value 1=lx  is considered, 
one can verify, if the observation 12 −ta  influences ta2 . The main disadvantage 
of the variant B is that investigated time series )( tx  and )( ty  are twice shorter 
than the original data )( ta , which, obviously, decreases the power of the test. 

 Firstly, both procedures presented above, were applied to simulated data. 
From the logistic map )1(41 ttt aaa −=+ , for the initial state 7.00 =a , the chao-
tic time series of 1599 observations was generated. The value of ε =1.5 and the 
lags lx=ly equalled 5...,,2,1 , in turn, were considered in the test.  

 The results of this research, compared with the results obtained for the white 
noise time series, are summarized in Table 1. In each cell, the computed value 
of TVAL (see Eq. 9) is presented. The table header contains information, which 

                                                 
2 To apply the H-J procedure, the DGP of (at) must satisfy the assumptions of this 

method (see section 2). In such a case, its subprocesses considered in A and B, fulfill 
these assumptions too. 
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set of time series (A or B) was analyzed. The symbols *, **, *** denote rejec-
tion of 0H  at 10%, 5% and 1% significant level, respectively3. 

 As it can be seen, there is no evidence of any autodependencies in the white 
noise time series. The opposite, but simultaneously expected, result was ob-
tained for the logistic map. For both variants – A and B a strong evidence of 
autodependencies was found. Since the further research showed no linear rela-
tions between the observations, we conclude that these dependencies are nonli-
near. Moreover, the GARCH model was not able to capture them, which cor-
rectly indicates, that this time series was generated by the process of a different 
type.  

Table 1. Results of  H-J test for the white noise and the logistic map 

lx=ly White noise 
(A) 

White noise 
(B) 

Logistic map (A)  Logistic map (B) 
series GARCH(1,1) series GARCH(1,1) 

1 -0.389 -0.532 -13.689*** -3.606*** 3.211*** 2.912*** 
2 0.312 0.569 4.681*** -0.533 3.658*** 3.289*** 
3 0.286 0.931 -3.803*** 0.827 3.511*** 3.557*** 
4 0.453 0.751 1.411 0.012 3.000*** 3.283*** 
5 0.102 -0.407 -1.023 -0.940 2.241** 2.654*** 

 Next the H–J test was applied to the Warsaw Stock Exchange indices from 
2.01.2001-16.05.2007 (1600 observations). For the each index, the three time 
series were analysed: daily log returns, residuals from their ARMA and ARMA-
GARCH models. Investigation of the residuals from the ARMA model gives 
information, if autodependencies are nonlinear. If so, the standardized residuals 
from the ARMA-GARCH model were analysed to verify if this class of proc-
esses can capture nonlinear dynamics of the investigated data. The results of 
this analysis are presented in Tables 2-11. 

Table 2. Results of  H-J test for the index WIG-BANKI  

lx=ly 
WIG-BANKI (A) WIG-BANKI (B) 

Returns MA(1) MA(1) 
GARCH(1,1) Returns MA(1) MA(1)-

GARCH(1,1) 
1 -0.438 -0.542 -3.949*** 1.494 1.426 0.582 
2 3.011*** 3.027*** 1.601 2.462** 2.460** 1.034 
3 -0.137 0.182 -1.861* 2.237** 2.156** 0.411 
4 1.813* 1.658* 0.528 2.465** 2.423** 0.659 
5 1.136 1.190 -0.192 3.068*** 2.988*** 1.248 

       

                                                 
3 According to the definition of causality (see Eq. 1), autodependencies are found,  

if, for at least one value of lx, the TVAL statistic falls in the critical region. 
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Table 3. Results of  H-J test for the index WIG-BUDOW 

lx=ly 
WIG-BUDOW (A) WIG-BUDOW (B) 

Returns AR(1) AR(1)-
GARCH(2,1) Returns AR(1) AR(1)-

GARCH(2,1) 
1 2.631*** 2.694*** 0.412 2.874*** 3.246*** 0.639 
2 3.882*** 3.846*** 1.855* 3.959*** 4.292*** 1.115 
3 0.821 1.201 -0.239 5.063*** 4.749*** 1.479 
4 3.004*** 3.149*** 1.227 5.143*** 4.375*** 1.442 
5 1.941* 1.980** 0.493 4.490*** 3.649*** 0.785 

Table 4. Results of  H-J test for the index WIG-INFO 

lx=ly 
WIG-INFO (A) WIG-INFO (B) 

Returns AR(1) AR(1)-
GARCH(2,1) Returns AR(1) AR(1)-

GARCH(2,1) 
1 4.187*** 4.230*** -0.262 3.613*** 3.195*** -0.803 
2 4.069*** 4.128*** 0.840 4.127*** 4.093*** 0.344 
3 4.782*** 4.694*** 1.245 4.281*** 3.916*** -0.569 
4 3.506*** 3.626*** -0.487 3.738*** 4.197*** -0.268 
5 2.696*** 2.549** -0.430 4.145*** 4.299*** -0.101 

Table 5. Results of  H-J test for the index MWIG40 

lx=ly 
MWIG40 (A) MWIG40 (B) 

Returns ARMA(2,1) ARMA(2,1)-
GARCH(1,1) Returns ARMA(2,1) ARMA(2,1)-

GARCH(1,1) 
1 4.232*** 4.362*** 0.469 2.775*** 2.709*** 0.369 
2 3.665*** 3.649*** -0.287 4.149*** 4.296*** 1.362 
3 3.528*** 3.696*** 1.625 5.405*** 5.538*** 2.026** 
4 4.566*** 4.514*** 0.573 4.883*** 5.135*** 1.040 
5 3.989*** 3.465*** 0.373 5.296*** 5.566*** 1.416 

  

Table 6. Results of  H-J test for the index WIG-SPOZY 

lx=ly 
WIG-SPOZY (A) WIG-SPOZY (B) 

Returns AR(2) AR(2)-
GARCH(1,1) Returns AR(2) AR(2)-

GARCH(1,1) 
1 4.126*** 3.949*** -0.796 4.681*** 4.033*** 0.514 
2 3.341*** 3.698*** -1.687* 4.834*** 4.738*** 0.143 
3 3.808*** 3.870*** 0.054 4.900*** 4.708*** 0.289 
4 3.588*** 3.486*** 0.750 4.712*** 4.516*** -0.019 
5 2.879*** 3.103*** -0.565 5.193*** 5.072*** -0.052 

  

Table 7 Results of  H-J test for the index SWIG80 

lx=ly 
SWIG80 (A) SWIG80 (B) 

Returns ARMA(2,1) ARMA(2,1) -
GARCH(1,1) Returns ARMA(2,1) ARMA(2,1) -

GARCH(1,1) 
1 3.519*** 3.906*** 1.180 4.392*** 3.603*** 1.869* 
2 3.706*** 2.667*** 0.272 4.213*** 3.529*** 1.803* 
3 2.707*** 2.148** 0.169 4.084*** 3.701*** 1.908* 
4 2.748*** 2.006** 0.003 4.369*** 3.770*** 1.968** 
5 3.115*** 2.380** 0.619 3.217*** 3.176*** 0.830 
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Table 8. Results of  H-J test for the index TECHWIG 

lx=ly 
TECHWIG (A) TECHWIG (B) 

Returns AR(1) AR(1)-
GARCH(1,1) Returns AR(1) AR(1)-

GARCH(1,1) 
1 4.299*** 4.196*** -0.294 4.056*** 3.155*** -1.565 
2 4.393*** 4.804*** 0.825 4.616*** 4.459*** 0.034 
3 5.322*** 5.390*** 1.894* 5.152*** 4.405*** -0.502 
4 4.018*** 4.158*** -0.223 4.963*** 4.533*** -0.814 
5 3.091*** 3.093*** -0.520 5.211*** 4.884*** -0.533 

  

Table 9. Results of  H-J test for the index WIG-TELKO 

lx=ly WIG-TELKO (A) WIG-TELKO (B) 
Returns GARCH(1,1) Returns GARCH(1,1) 

1 3.797*** 0.264 3.558*** 1.206 
2 3.273*** -1.121 3.754*** 0.490 
3 3.728*** 1.294 4.105*** 0.905 
4 2.664*** 0.155 4.235*** 0.453 
5 3.372*** 0.844 4.556*** 0.643 

  

Table 10. Results of  H-J test for the index WIG 

lx=ly 
WIG (A) WIG (B) 

Returns AR(1) AR(1)-
GARCH(1,1) Returns AR(1) AR(1)-

GARCH(1,1) 
1 0.997 1.026 -2.321** 0.779 0.527 -2.064** 
2 3.401*** 3.368*** 0.322 1.791* 2.156** -1.258 
3 2.834*** 3.154*** 0.301 3.494*** 3.570*** -0.237 
4 4.018*** 4.025*** 2.266** 3.039*** 4.003*** 0.228 
5 3.211*** 3.453*** 0.338 3.140*** 4.211*** 0.620 

  

Table 11. Results of  H-J test for the index WIG20 

lx=ly 
WIG20 (A) WIG20 (B) 

Returns MA(1) MA(1)-
GARCH(1,1) Returns MA(1) MA(1)-

GARCH(1,1) 
1 0.625 0.725 -2.949*** 1.018 0.948 -1.176 
2 3.558*** 3.494*** 0.658 2.285** 2.246** -1.000 
3 2.816*** 3.034*** 0.168 3.287*** 3.164*** -0.304 
4 3.644*** 3.593*** 1.621 2.905*** 2.716*** -0.686 
5 3.140*** 3.146*** 0.102 2.851*** 2.790*** -0.723 

  

The obtained results indicate that the evidence of autodependencies was 
found for the most investigated indices. The same conclusion may be drawn for 
the residuals from the ARMA models, which means that these autodependen-
cies are nonlinear. Filtering by the ARMA-GARCH models made the modulus 
of the TVAL statistic smaller but in the most cases (WIG-BUDOW (A), 
MWIG40 (B), WIG-SPOZY (A), SWIG80 (B), TECHWIG (A), WIG (A)), these 
models were not able to capture the identified nonlinearities. Moreover, in some 
cases (WIG-BANKI (A), WIG (B), WIG20 (A)) filtering by the ARMA-
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GARCH models increased the TVAL statistic, which may also confirm that the 
identified autodependencies are not driven by a GARCH process. 
 A presence of autodependencies makes an effective prediction of time series 
possible. Of course, the applied procedure provides no guidance regarding the 
source of the identified relations and so the method of forecasting. However, 
one should realize, that due to the variety of nonlinearities, an attempt to recov-
er the generating mechanism seems to be futile. That is why, nonparametric 
methods of forecasting may be plausible for the data investigated in this paper 
(see e.g. Orzeszko, 2004). However, the problem of finding suitable techniques 
of prediction are beyond the scope of this paper. 
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