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1. Introduction 
 An extensive discussion of the empirical evidence of changes in the time 
series properties of inflation was provided in Cecchetti, Hooper, Kasman, 
Schoenholtz, and Watson (2007). In their paper they used an unobserved com-
ponent model with stochastic volatility to characterize inflation and AR model 
with time varying coefficients and stochastic volatility to describe the growth of 
real GDP. These models were originally used by Stock and Watson (2007) and 
Nason (2006). Also Koop and Potter (2001) considered a time-varying parame-
ter AR model where the coefficients evolve over time according to a random 
walk for quarterly change in the US CPI. All mention above authors found 
strong evidence of randomness of autoregressive parameters for inflation data. 
In our model-based analysis the mean of inflation is specified by a random coef-
ficient autoregressive (RCA) or generalized linear (GLL) model. Unlike men-
tioned above papers, in our models the random parameters and the unobserved 
component follow stationary processes. Using monthly inflation data, our mod-
elling framework and Bayesian estimation, we find remarkable changes in vary-
ing mean.  
 The paper is organized as follows. Section 2 introduces the time-varying 
parameter (TVP) models and Bayesian estimation. Section 3 presents empirical 
results for Polish inflation. Section 4 concludes. 

 

                                                 
∗ I would like to thank Prof. Jacek Osiewalski and Prof. Małgorzata Doman for help-

ful comments and suggestions. 
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2. The TVP Models and Bayesian Inference 
The simple random coefficient autoregressive model RCA(p) for inflation 

rates has the form: 

tptptttt yyy εδδφ ++++= −− ...110 , ( )2,0~ σε Nt , (1) 

itiit ηφδ += ,  ( )2,0~ iit N ωη  for pi ...,,1= , (2) 

where ty  is observation at time t, tε  is white noise with variance 2σ , itη  

are white noises with variances 2
iω  and tε  and isη  are independent for all t  

and  s.  
Andel (1976) and Nicholls and Quinn (1982) first investigated the statistical 

properties of RCA models. Tsay (1987, 2005) and Granger and Teräsvirta 
(1993) described properties of conditional variance in RCA models.  

The second model is so-called generalized linear model (GLL) (Bos, Ma-
hieu and van Dijk, 2000).  

ttty εδ += , ( )2,0~ σε Nt , (3) 

ttt ηδφδ += −11 , ( )2
1,0~ ωη Nt . (4) 

The GLL model contains information on the varying local mean of observa-
tions. We also assume that the error in equation (3) is independent of the error 
in equation (4). The unobserved mean component in the GLL model tδ  is an 
autoregressive process with variance 02

1 >ω  and the autoregressive parameter  
11 1 <<− φ . For 11 =φ  and 02

1 >ω  we have the well-known model called local 
level model (see Harvey, 1989; Durbin and Koopman, 2001; Koop, 2003) and it 
implies that ty  follows an I(1) process. When the disturbances are Gaussian 
with constant variance, this model displays the same correlation structure as the 
ARMA(1,1) model (Bos, 2001). Though this model is extremely simple, it is a 
basic model in many financial market and macroeconomics models (Bos, Ma-
hieu and van Dijk, 2000; Stock and Watson, 2007). This model  is supposed to 
pick up the periods of rising or falling inflation rates levels. The GLL model is 
also state space models, where (3) is measurement and (4) is transition equation. 

Our GLL model is linear and Gaussian. In this case, the Kalman filter equa-
tions (Harvey, 1989; Bos, 2001; Koop, 2003) lead to a prediction-error decom-
position. This decomposition filters out the prediction error te  at time t  given 
all previous observations and the corresponding variance tF . The sampling 
distribution is: 
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In our case, the Kalman filter begins by setting 01 =a  and 501 =P , the 
starting values for the initial state ( )111 ,~ PaNδ  and iθ  denotes vector of un-
known parameters in iM  model and ( )N1 yyy ...,,=  is vector of observation. 

Combining the sampling distribution (5) with a prior ( )ii Mp |θ  we get the 
kernel of posterior densities of GLL parameters. 

For the RCA case the following density can represent the sampling model: 

( ) ∏ ∑∑
= =

−
=
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⎠

⎞
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⎝

⎛
++=

N

t

p

i
iti

p

i
ititNii yyyfMyp

1 1

222

1
0

1 ,|,| ωσφφθ , (6) 

where ( )wczfN ,|1  denotes univariate normal density with mean c  and 
variance w  (see Tsay, 1987, 2005). 

3. TVP Models for Monthly Inflation Rates in Poland 
The data comes from the National Bank of Poland, concerning the core in-

flation index tCI , excluding administratively controlled prices, and ranges from 
January 1998 until August 2007. Index represent percentage change from the 
same period of the previous year. We have a sample of 116 monthly observa-
tions. 

We use Bayes factors for testing the integration of our series ( )tCIln . Fol-
lowing Koop and van Dijk (2000) we consider model which illustrates connec-
tions between the Dickey-Fuller and KPSS tests: 

t

p

i
itittt vCIcCICI +Δ++= ∑

−

=
−

1

1

lnlnln ρτ ,     ( )2,0~ vt Nv σ  (7) 

ttt u+= −1ττ ,     ( )2,0~ ut Nu σ . 

Using simple transformation ( )222 / vuu σσσλ +=  with uniform prior ( ) 1=λp  
over the interaval [ )1,0  and 2=p , we consider four hypotheses1: 

:1H  0=λ  and 1<ρ . The series  is stationary. 
:2H  10 << λ  and 1<ρ . The series  is I(1) plus a stationary component. 
:3H  0=λ  and 1=ρ . The series  is I(1) and a random walk. 

                                                 
1 Koop and van Dijk (2000), expression (A.3). 
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:4H  10 << λ  and 1=ρ . The series is I(2). 
The results for logarithm of core inflation index are contained in Table 1. 

Table 1. Posterior model probabilities for inflation data 
 ( )DataHP |1  ( )DataHP |2  ( )DataHP |3  ( )DataHP |4  

Posterior model probabilities 3.21E-56 9.99E-01 5.56E-59 9.28E-56 

The above results provide strong evidence for integration (I(1)). Hypotheses 
2H  receives much more probability than others indicating that the data prefer 

the unit root with stationary component. Our results are consistent with results 
obtained in Koop and van Dijk (2000) for macroeconomic data. Given that our 
data exhibit strong evidence for non-stationary I(1) behaviour, first differences 
of inflation rates are constructed from the core inflation index by taking 

tt CIy lnΔ= .  

In order to compare different model specifications, we have to calculate 
marginal data densities ( )iMyp | . Posterior probabilities and marginal data 
densities for all competitive models are presented in Table 2. All models have 
equal prior probabilities. The larger the posterior probability, the more prefer-
able is the designated model. 

Table 2. Marginal data densities and posterior probabilities of competitive models 
 Model 

 RCA(1) RCA(2) AR(1) AR(2) GLL AR(1)-
GARCH 

Marginal 
data den-

sity 
1.28E+43 5.36E+41 2.16E+42 4.94E+41 3.67E+41 1.81E+42 

Prior 
probability 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 

Posterior 
probability 0.7046 0.0295 0.1189 0.0272 0.0202 0.0996 

Results in Table 2 inform that RCA specifications seem to be the best mod-
els to describe the dynamics of inflation rates. The highest posterior probability 
for RCA(1) suggests that it is the best specification among the competitive 
models. This model has posterior probability equal to 0.7046. Second order 
RCA and AR models are much less probable.  

The posterior probabilities of all RCA models are close to 0.73. Another 
random coefficient model (GLL) with posterior probability 0.0202 has received 
the lowest rank. Also the GARCH model is the third with posterior probability 
equal to 0.0996. The Bayes factor, comparing the RCA(1) model to standard 
AR(1) is 5.92. Using these facts, it can be seen that the Bayes factor provides 
evidence in favour of the RCA model. 
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We also investigate the sensitivity of the posterior results with respect to the 
choice of the prior. Less informative priors for variances of random parameters 
in RCA models do not lead to substantial change in model ranking.  

Since RCA(1) is the best model specification, we investigate the random-
ness of the autoregression parameter. Koop and van Dijk (2000) use signal-to-
noise ratio to carry out Bayesian tests for the randomness of parameter in the 
case of the non-stationary local level (LL) model. Signal-to-noise is defined as 
the ratio between the variance of signal and of the noise (Harvey, 1989). In our 
case we have: 22

1 /σωμ = . Since [ )∞∈ ,0μ , it may be convenient to map the 
parameter to the interval [ )1,0  through the simple transformation 

( )22
1

2
1 / σωωθ += . For 0=θ  we have the standard AR model.  

Consider the Bayes factor comparing 0:0 =θH  with ( )1,0:1 ∈θH  which 
can be calculated using the Savage-Dickey density ratio (see Verdinelli and 
Wasserman, 1995; Koop and van Dijk, 2000): 

( )
( )0

|0
01 =

=
=

θ
θ

p
DatapB , (8) 

where the numerator is the marginal posterior of θ  for the alternative hy-
pothesis and the denominator is the marginal prior for θ  evaluated at the point 
of interest 0=θ .  The Bayes factor in favour of the randomness of parameter is 
less than one. There are two problems with using the Savage-Dickey density 
ratio in RCA models. Firstly, we need posterior distribution of θ , and secondly 
we have to evaluate it at zero.  

First problem is easily solved, because there exist several different ways of 
calculating the posterior distribution of θ . For example we can use simply 
Monte Carlo integration, because θ   is a function of 2σ  and 2

1ω . We can also 
use different parameterization of the RCA model. Note that conditional variance 
in RCA(1) model in terms of θ  and 2

1ω  can be written as: 

( )( )θθω /12
1

2
1 −+= −tt yh .  (9) 

According to Koop and van Dijk (2000), we use a beta prior for θ , which 
can take on different shapes depending on the values of the two parameters 0θ  
and 1θ . Using this prior we can perform a prior sensitivity analysis on θ  to test 
the robustness of the Bayes factors 01B .  The posterior of θ   (bottom-right cor-
ner) and uniform prior distribution ( )110 ==θθ  are plotted in Figure 1.  

Second problem arises with the attempt to evaluate posterior distribution of 
θ  at zero. Due to the difficulties of evaluating (9) at the point 0 due to division 
by zero, we evaluate it at a point close to zero. Following  Koop and van Dijk 
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(2000) we are testing the hypothesis 000001.0* =θ . From practical point of 
view the differences between these two hypotheses are negligible. In our model 
we can not analytically integrate out all nuisance parameters but we can esti-
mate ( )Datap |*θ  by a simulation-based normal approximation (see Verdinelli 
and Wasserman, 1995): 

( ) ( ) ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −
−≈

w
cg

w

g
Datap

2
'exp

2

'
|

2**
* θ

π

θ
θ , (10) 

where ( )θτ g=  is a Box-Cox transformation such that τ  has nearly a nor-
mal distribution, and c and w are the sample mean and variance of the ( )θg . To 
calculate the Savage-Dickey density ratio, it is necessary to setup MCMC algo-
rithm. In order to provide necessary level of accuracy of normal approximation, 
for each prior 500000 draws have been simulated. 

Table 3. Bayes factors in favour of the hypothesis 0=θ  
 0θ  

1θ  0.1 0.5 1 2 
0.1 1.2502e-15 5.7887e-18 2.4837e-14 1.7937e-10 
0.5 3.1561e-16 4.4875e-15 5.3067e-14 2.6716e-10 
1 7.1207e-15 7.3525e-13 1.8703e-11 5.4980e-08 
2 1.8391e-11 3.7147e-10 8.8766e-09 6.6454e-05 

Table 4. Posterior information on Polish inflation rates 
 RCA(1) AR(1) GLL 

0φ  -0.021 
-0.020 

(0.022) 
[-0.057, 0.028] 

-0.026 
-0.023 

(0.0232) 
[-0.068, 0.025] - - 

1φ  0.786 
0.777 

(0.066) 
[0.683, 0.916] 

0.755 
0.750 

(0.0616) 
[0.633, 0.866] 

0.813 
0.789 

(0.0622) 
[0.700, 0.950] 

2ω  0.132 
0.113 

(0.063) 
[0.033, 0.266] - - 0.048 

0.043 
(0.011) 

[0.027, 0,068] 
2σ  0.042 

0.039 
(0.008) 

[0.030, 0.056] 
0.058 
0.060 

(0.0080) 
[0.050, 0.080] 

0.008 
0.005 

(0.006) 
[0.000, 0.019] 

θ  0.692 
0.732 

(0.140) 
[0.466, 0.916] - - 0.853 

0.867 
(0.109) 

[0.650, 1.000] 

It can be seen from Table 3 that the Bayes factors, provide clear evidence in 
favour of the randomness of the autoregressive parameter. Most evidence for 
randomness of the parameter is found when the prior of θ  has a similar location 
and dispersion to the posterior distribution2. The Bayes factor can vary, but in 
all cases strong evidence of a randomness of autoregressive parameter appears. 

                                                 
2 For 5.00 =θ and 1.01 =θ  the beta distribution is U-shaped with mean 0.83, and 

std. dev. 0.29.  
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In Figure 1 we present the priors on the parameters of the RCA(1) models 
that are used (solid lines). We use proper priors which are expected to be only 
weakly informative compared to the information in the likelihood. The prior 
distribution of the autoregression parameter 1φ  is normal distribution with zero 
mean and variance equal to one. For constant 0φ , we also have normal prior 
which is also of zero mean and variance one. The variances 2

1ω  of random pa-

rameters and residual variance 2σ  have exponential distribution with  12
1
=ωλ  

and 102 =σλ . We use uniform prior ( )θp  over the interval [ )1,0 . It is seen that 
the posteriors are much more concentrated than the priors. 
 

1φ  

 
2σ  

 
 

2
1ω

 
θ  

 

Figure 1. Priors (solid line) and posterior histograms of RCA(1) parameters 
 
In Table 4 the results of the estimations are presented. Here we consider 

only three models. For each model, i.e. the RCA(1), the second best AR(1) and 
the worst GLL parameter, the mean, standard deviation (in parentheses), median 
(in the second line) and the bounds of the 95%  HPD region (in square brackets) 
are reported. 
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Concerning the posteriors for the selected models the following remarks can 
be made. From Table 4 it is seen that the posteriors of the autoregressive pa-
rameter 1φ  are tight. The posterior mean is positive and very close to the poste-
rior median, implying a symmetric posterior distribution. This corresponds with 
the findings of strong autocorrelation in the series. 

 For the RCA(1) model, the variances of the observation disturbance and 
random parameter have a posterior median not very close to the mean, which 
corresponds to positive skewness of the posterior densities (see top-right and 
bottom-left panel of Figure 1). 

 
1+NCI  

 
 

2+NCI

 

3+NCI

 
Figure 2. Histograms of predictive distributions of the core inflation index over the 

period IX-XI 2007 computed using RCA(1) 

The variance of the random parameter 2
1ω  takes on values of around 0.13 

with rather moderate standard deviation. Note that 02
1 =ω  is not in HPD inter-

val for all the models, where the parameter is time-varying. The posterior of the 
θ  parameter (related to the signal-to-noise ratio) points at its large values, indi-
cating randomness of the autocorrelation parameter. Similar effect is found for 
the parameter θ  in GLL model. The posterior distribution of θ  for the RCA(1) 
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model has mean 0.69, which rises to 0.85 for the GLL model. The negative 
skewness of the posterior of θ  can be observed at bottom-right panel of Figure 
1. In GLL model, parameter θ  is more tightly estimated. Nevertheless, the GLL 
model seems to be much less supported by the data than other, even constant 
parameter models (see Table 2). 

Now we also examine the usefulness of the RCA model for short forecast 
horizons. We make predictive distributions of monthly inflation for three hori-
zons 3,2,1=h . Predictive distributions of core inflation index have been calcu-
lated using Monte Carlo integration. Figure 2 and Table 5 presents histograms 
and quantiles of the predictive densities generated by the RCA(1) model. 

Table 5. Quintiles of predictive densities for Polish core inflation over the period IX-XI 
2007 (RCA(1) model)  

Quantiles 1+NCI  2+NCI  3+NCI  
Quantile 5 

First quartile 
Median 

Third quartile 
Quantile 95 

1.020414 
1.022925 
1.024729 
1.026518 
1.029121 

1.018342 
1.023183 
1.026660 
1.030258 
1.035947 

1.015657 
1.022765 
1.027860 
1.033303 
1.042627 

True value 1.026106 1.030070 1.034225 

Figure 2 depicts the shape of the predictive densities of core inflation index 
computed with the best competitive model, namely RCA(1). Even for short 
horizons, it is seen that the spread of the density changes considerably. In our 
case the predictive medians underestimate the true values of core inflation. The 
true values are close to third quartile. Not surprisingly, the best results are found 
for the one-month horizon. Note that conditional mean for AR and RCA models 
is the same but AR has smaller variance of disturbances. It seems that, for AR 
model predictive densities would have the same location. but forecast intervals 
were tighter. Therefore we can expect that standard AR model will perform 
worse. The results for the RCA(1) model are more realistic. 

4. Conclusions 
In this paper we have discussed and implemented Bayesian estimation for 

stationary random coefficient autoregressive models. Our research suggests that 
the RCA models, where the autoregressive parameters change smoothly, can 
have higher rank than other competitive models: standard AR and AR-GARCH. 
Using Bayesian model comparison we can formally test parameter stability. 
Sensitivity analysis with Savage-Dickey density ratio confirms and extends 
these findings. For GLL model the results are ambiguous. This model is the 
worst according to the marginal likelihood, but has the largest signal-to-noise 
ratio. We think that further research is needed.  
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Forecasting results are not very satisfactory. We find that the width of the 
forecast intervals derived from RCA models appears to be more correct, though 
true values of predicted core inflation were close to third quartile. Nevertheless, 
the RCA appears to have improved the prediction results of core inflation index. 
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