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1. Introduction 
 
 Multivariate models of asset returns are very important in financial 
applications. Asset allocation, risk assessment and construction of an optimal 
portfolio require estimates of the covariance matrix between the returns of 
assets (see e.g. Aguilar and West (2000), Pajor (2005a, 2005b)). Similarly, 
hedges require a covariance matrix of all the assets in the hedge.  
 There are two main types of volatility models for asset returns: the 
Generalised Autoregressive Conditional Heteroscedasticity (GARCH) and the 
Stochastic Volatility (SV) families. The GARCH models define the time-
varying covariance matrix as a deterministic function of past squared 
innovations and lagged conditional variances and covariances, whereas the 
conditional covariance matrix in the SV models is treated as an unobserved 
component that follows some separate multivariate stochastic process. The first 
multivariate SV model proposed in the literature by Harvey, Ruiz and Shephard 
(1994) allowed the variances of multivariate returns to vary over time, but 
constrained the correlations to be constant. Pitt and Shephard (1999) proposed a 
factor SV model, which allows a parsimonious representation of the time series 
evolution of covariances when the number of series being modelled is very 
large. Simple multivariate factor models for SV processes have been suggested, 
but not applied, by Jacquier, Polson and Rossi (1995, 1999). Tsay (2002) 
proposed the SV process based on the Cholesky decomposition of the 
conditional covariance matrix. A practical drawback of stochastic volatility 

                                                 
1 Research supported by a grant from Cracow University of Economics. 
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models is the intractability of the likelihood function. Because the conditional 
covariance matrix is an unobserved component the likelihood function is only 
available in the form of a multiple integral. Thus, estimating the parameters of 
SV models requires numerical methods based on Markov Chain Monte Carlo 
(MCMC) techniques.  
 The main goal of the paper is to compare the SV models differ in structure 
of conditional covariance matrix and in the number of latent processes. We 
consider the SV models with zero, constant or time-varying conditional 
correlation coefficient. The other aim of the paper is to check sensitivity of the 
results of Bayesian model comparison with respect to the ordering of financial 
instruments in the TSV model (proposed by Tsay (2002)). In order to compare 
five different SV-type specifications we build VAR(1) model with the 
disturbances following one of the competing bivariate SV specifications. These 
models are used to describe the main Polish exchange rates (the daily exchange 
rates of PLN/USD and PLN/DEM, 6.02.1996 – 31.12.2001, PLN/USD and 
PLN/EUR, 31.12.2001 – 31.12.2004). In order to obtain posterior distributions 
of the quantities of interest, we use Markov chain Monte Carlo (MCMC) 
methods, mainly the Metropolis-Hastings algorithm within the Gibbs sampler to 
simulate from the posterior distribution (see Gamerman (1997), Pajor (2003, 
2005a, 2006) for details). 
 The structure of the article is as follows. Sections 2 focuses on the 
description of the competing bivariate SV models. Section 3 presents the 
posterior results connected with the model comparison. Finally, we give some 
conclusions in Section 4. 
 
 
2. Competing Bivariate SV Models  
 
 Let xj,t denote the price of asset j (exchange rate in our application) at time t 
for j = 1,2 and t = 1, 2, ..., T. The vector of growth rates yt =(y1,t, y2,t)′, each 
defined by the formula yj,t = 100 ln (xt,j/xj,t-1), is modelled here using the basic 
VAR(1) framework: 
 ttt yRy ξδδ +−=− − )( 1 ,  t = 1, 2, ... ,T (1) 
where T denotes the number of the observations used in estimation. In (1) δ is a 
2-dimensional vector, R is a 2×2 matrix of parameters, and ξt is a bivariate SV 
process. More specifically: 
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We assume that, conditionally on vector Ωt(i) (consisting of model-specific 
latent variables) and the parameter vector θi, ξt follows a bivariate Gaussian 
distribution with mean vector 0[2×1] and covariance matrix Σt, i.e. 
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),0(~,| ]12[)( tiitt N ΣΩ ×θξ , t = 1, 2, ..., T. Competing bivariate SV models are 
defined by imposing different structures on Σt.  
 The elements of δ and R are common parameters. We assume for them the 
multivariate standardised Normal prior N(0,I6), truncated by the restriction that 
all eigenvalues of R lie inside the unit circle. These parameters and the 
remaining (model-specific) parameters are a prior independent.  

 
2.1. Stochastic Discount Factor Model – SDF  
 
 The first specification considered here is the stochastic discount factor 
model (SDF) proposed by Jacquier, Polson and Rossi (1995). The SDF process 
is defined as follows: 

ttt hεξ = ,    thtt hh ησφ += −1lnln ,    ),0(~ ]12[ Σ×iiNtε ,    )1,0(~ iiNtη , 
εj,t ⊥ ηs ,  t, s ∈ Z, j = 1,2. 
 
 Here {εt} is a sequence of independent and identically distributed normal 
random vectors with mean vector zero and constant covariance matrix Σ. Thus, 
we have 
 , where ),0(~,| ]12[)1( ΣΩ × titt hNθξ tt h=Ω )1( . 
The conditional covariance matrix of ξt is time varying and stochastic, but all its 
elements have the same dynamics governed by ht: 
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Thus, the conditional correlation coefficient is time invariant:  
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In order to complete the Bayesian model, we have to specify a prior distribution 
on the parameter space. We assume the following prior structure: 
 , )()(ln)()(),ln,,( 0

2
0

2 Σ=Σ phppphp hh σφσφ
where we use proper prior densities of the following distributions: 
φ ~ N(0, 100) I(-1,1)(φ),  ~ IG(1, 0.005), lnh2

hσ 0 ~ N(0, 100), Σ ~ IW(2I, 2, 2). 

 The prior distribution for (φ, )′ is the same as in the univariate SV model 
(see Pajor (2003)). We impose stationarity of lnh

2
hσ

t by truncating the prior for φ. 
This implies that the support of φ is (-1, 1) – the region of stationarity (I(-1, 1)(.) 
denotes the indicator function of the interval (-1, 1)). The symbol IG(v0, s0) 
denotes the inverse Gamma distribution with mean s0/(v0-1) and variance 

(thus, here the prior mean for  does not exist, but  )]2()1/[( 0
2

0
2
0 −− vvs 2

hσ 2−
hσ

has a Gamma prior with mean 200 and variance 40000). The symbol IW(B, d, 2) 
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denotes the two-dimensional inverse Wishart distribution with d degrees of 
freedom and parameter matrix B. Lnh0 is treated as an additional parameter and 
estimated jointly with other parameters. The prior distribution used are 
relatively noninformative. 
 
2.2. Basic Stochastic Volatility Model – BSV 

Next, we consider the basic stochastic volatility process (BSV), where ξ1,t 

here 
hhDiag= . (4) 

,1

 
 
and ξ2,t follow independent univariate SV processes: 
 ),0(~,| ]12[)2( titt N ΣΩ ×θξ , 
w
 tΣ ),( ,2,1 tt

The conditional variance equations are 
 tt hh 11111,11111,1 )(lnln σγφγ +−=− − η , t

 ttt hh ,222221,22222,2 )(lnln ησγφγ +−=− − , 

where )',( ,2,1 ttt ηηη = , ),0(~ 2]12[ IiiNt ×η , )',( ,2,1)2( ttt hh=Ω . 
 For the parameters we use the same specification of prior distribution as in 

 zero. Many studies find 

2.3. Bivariate JSV(2) Model 

Now, we propose a SV process based on the spectral decomposition of the 

the univariate SV model (see Pajor (2003)), i.e. γjj ~ N(0, 100), φjj ~ N(0, 100)I(-

1,1)(φjj),  2
jjσ ~ IG(1, 0.005), lnhj,0 ~ N(0, 100), j = 1, 2. 

 In this case, the conditional correlation is equal to
that this assumption is not supported by most financial data. Thus, there is a 
need to extend the BSV model to incorporate time-varying correlations.  

 

 
 
matrix Σt. That is  
 Σt = P Λt PP  (5) -1, 
where ),( ,2,1 ttt Diag λλ=Λ  is the diagonal matrix consisting of all eigenvalues 
of Σt and P  is the matrix consisting of the eigenvectors of Σt. For series {lnλj,t} 
(j =1,2), similarly as in the univariate SV process, we assume standard 
univariate autoregressive processes of order one, namely 
 ttt ,111111,11111,1 )(lnln ησγλφγλ +−=− − , 
 ttt ,222221,22222,2 )(lnln ησγλφγλ +−=− − , 
where )',( ,2,1 ttt ηηη =  and ),0(~ 2]12[ IiiNt ×η , ,( ,2,1)3( ttt λλ= )'Ω . 

 transformation for λj,t is used to ensure the positiveness of Σ . The  Log t

matrix Σt is positive definite if λj,t > 0 for j = 1, 2, which is achieved by 
modelling ln λj,t instead of λj,t. If 1|| <jjφ  (j=1, 2) then {ln λ1,t} and {ln λ2,t} are 
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stationary and the JSV(2) process ite noise. In addition, P is an ortogonal 
matrix, i.e. P′P=I

is a wh
2. Without loss of generality, we can assume that  
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Using equation (5), we obtain the conditional covariance matrix of ξt, which can 
be written as: 
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y, using (6), we obtain the conditional correlatioConsequentl n coefficient, 
which is time-varying and stochastic if p11≠1:  
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tt pp 2
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r each t = 1, 2, ..., T. (7) 

 For the model-specific parameters we take the following prior distributions: 
jj ~

=
model, but we formally exclude this 

ariate JSV(3) Model 

ructure of the conditional covariance matrix is 

γ  N(0, 100), φjj ~ N(0, 100)I(-1,1)(φjj),  2
jjσ ~ IG(1, 0.005), lnλj,0 ~ N(0, 100), j 

 1, 2; p11 ~ U(0,1) (i.e. uniform over (0, 1)). 
Note that if p11=1, then we obtain the BSV 
value.  
 

.4. Biv2
 

In the JSV(2) model the st 
based on two separate latent variables. The next specification uses three 
separate latent processes (thus called JSV(3)). In the definition of the JSV(2) 
model we replace p11 by a process p11,t with value in (0,1]. Thus, we have: 
 ttt ,1111111,11111,1 )(lnln ησγλφγλ +−=− − ,
 t,2tt 222221,22222,2 )(lnlnλ γ φ λ − γ +σ η=− − , 
 ttt ww ,21212112121 )( ησγφγ +−=− − , )]1/(ln[ ,11,11 ttt ppw = − , 

)',,( ,21,22,11 tttt ηηηη = , ),0(~ ]13[iiNt × 3I , 11,2,1)4( ttt p )',,(η Ω = λ λ ,t . 
 Now the number of the latent processes is equal to the numbe of distinct r 
elements of the conditional covariance matrix. Here we have: 
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We assume the following prior distributions: γij ~ N(0, 100), φij ~ N(0, 100)I(-

1,1)(φij), 2
ijσ ~ IG(1, 0.005), lnλj,0 ~ N(0, 100), i, j ∈ {1,2}, i ≥ j; w0 ~ N(0, 100). 

2.5. Bivariate TSV model 
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 Note that, the JSV(3) model does not allow the covariance to evolve over 

      (9) 
wh

 ⎢
⎣

=
1,21 t

t q
L ⎢

⎣
=

t
t q

G
,220

. 

Series {q21,t}, and {lnqjj,t} (j =1,2), analogous to the univariate SV, are standard 

time “independently” of the variances (see equation (8): each element of Σt 
depends on all latent variables). The next specification (proposed by Tsay 
(2002), thus called TSV) uses the Cholesky decomposition of the conditional 
covariance matrix: 
Σt = Lt Gt Lt′,  
ere Lt is a lower triangular matrix with unitary diagonal elements, Gt is a 

diagonal matrix with positive diagonal elements: 
⎤⎡ 01 ⎤⎡ tq ,11 0
⎥
⎦

 ⎥
⎦

univariate autoregressive processes of order one, namely  
 ttt qq ,1111111,111111,11 )(lnln ησγφγ +−=− − , 
 ttt qq ,2222221,222222,22 )(lnln ησγφγ +−=− − , 
 ttt qq ,2121211,212121,21 )( ησγφγ +−=− − , 

herew  )',,( ,22,21,11 tttt ηηηη =  and ~ 3]13[ IiiNt × ),0(η , Ω (5) = (q11,t, q t, q ,t)′. 
e decomposition in (9), we have: 
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Consequently, the conditional correlation coefficient between ξ1t and ξ2t is as 

t 22, 21

From th
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⎡⎤⎡ ttt qq ,11,12
2

,11 σσ

follows: 
 2

,21,11,22,11,21,12 / tttttt qqqqq +=ρ   for each t = 1, 2, ..., T.  (10) 
We make similar assumptions abou  

part

the conditional variances are not 
mod

3. Empirical Results  

In order to compare competing bivariate SV – type specifications we use 

t the prior distributions as previously. In
icular:  γij ~ N(0, 100), φij ~ N(0, 100)I(-1,1)(φij),  2

ijσ ~ IG(1, 0.005), lnqii,0 ~ 
N(0, 100) i, j ∈ {1,2}, i ≥ j,  q21,0 ~ N(0, 100). 

A major drawback of this process is that 
eled in a symmetric way, thus the explanatory power of model may depend 

on the ordering of financial instruments. 
 
 

 
 
two sets of financial data: the growth rates of the PLN/USD and PLN/DEM, 
which Osiewalski and Pipień (2004, 2005) analysed using bivariate GARCH – 
type specifications and the growth rates of the PLN/USD and PLN/EUR. The 
first data set represents the daily exchange rate of the German mark against the 
Polish zloty and the US dollar against the Polish zloty from February 5, 1996 to 
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December 31, 2001 (1482 modelled observations for each series). The second 
data set consists of two daily exchange rate series, namely, the euro against the 
Polish zloty and the US dollar against the Polish zloty from February 2, 2002 to 
December 31, 2004 (758 modelled observations for each series). The data were 
downloaded from the website of the National Bank of Poland.  
 
Table 1. Logs of Bayes factors in favour of JSV(3) model  

Model la s 
g10 (BJSV(3) i) 

PLN/US
Log10 (BJSV(3) i) 

PLN/US

 

Number of Number of  Lo
tent processe Parameters D, PLN/DEM 

(6.02.1996 – 31.12.2001) 
D, PLN/EUR 

(2.01.2002 – 31.12.2004) 
TS USD_DEM V

(TSVUSD_EUR) 3 18 5.326 0.400 

TSVDEM_USD
(TSVEUR_USD) 3 18 24.303 0.263 

JSV(3) 3 18 0 0 
JSV(2) 2 15 20.505 9.168 
BSV 2 14 128.487 47.711 
SDF 1 12 97.370 21.078 

 
The decimal logarithms of the Bayes factors in favour of JSV(3), calculated 

3) model wins our model 
m

 
for the two data sets using the Newton and Raftery’s (1994) method, are shown 
in Table 1. Because in the TSV specification the conditional variances are not 
modelled in a symmetric way, we consider two cases: TSVUSD_DEM (respectively 
TSVUSD_EUR) and TSVDEM_USD (respectively TSVEUR_USD). These models differ in 
ordering of elements in yt. In the TSVUSD_DEM (respectively TSVUSD_EUR) model 
y1,t denotes the daily growth rate of the PLN/USD exchange rate at time t, y2,t is 
the daily growth rate of the PLN/DEM (respectively PLN/EUR) exchange rate 
at time t. In the TSVDEM_USD (respectively TSVEUR_USD) model the ordering of 
components in yt is contrary to previous one. The empirical results show (see 
Table 1) that the explanatory power of TSV model depends on the ordering of 
components in yt. The TSVUSD_DEM model is about 19 orders of magnitude more 
probable a posterior than the TSVDEM_USD model. Furthermore, the TSV model 
with “wrong” ordering of financial time series (i.e. TSVDEM_USD) fits the data 
worse than the JSV(2) model, which describe the three distinct elements of the 
conditional covariance matrix by two separate latent processes. Thus, the 
explanatory power depends not only on the number of latent processes, but also 
the structure of the conditional covariance matrix. 
 We see that for both data sets the JSV(
co parison. But it is important to stress that the JSV structure is difficult to use 
in higher dimensions. The results indicate that the data reject the constant or 
zero conditional correlation hypothesis, represented by the SDF and BSV 
specifications. The BSV and SDF models are inadequate – they are much worse 
than the TSV and JSV(2), JSV(3) models. In case of the growth rates of the 
PLN/USD and PLN/DEM the decimal log of the Bayes factor of the BSV 
model relative to the JSV(3) model is 128. Assuming equal prior model 
probabilities, the SDF model (with the constant conditional correlation) is about 
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31 orders of magnitude more probable a posterior than the BSV model, but 
about 77 orders of magnitude worse than the JSV(2) model and about 92 orders 
of magnitude worse than the TSVUSD_DEM model.  

The ranking obtained for the growth rates of the PLN/USD and PLN/EUR 
(T=

odel comparison relies on the prior distributions for the 
para

. Conclusions  

In this article we used the main Polish exchange rates to compare various 

eferences  

guilar O., West M. (2000), Bayesian dynamic factor models and portfolio allocation, 

Game ic Simulation for Bayesian 

Harve Multivariate Stochastic Variance Model, 

758 observations) is different. The models with as many latent processes as 
there are conditional variances and covariances receive practically all posterior 
probability mass. The JSV(2) model, with the number of latent processes equal 
to the dimension of the modelled time series, is about 9 orders of magnitude less 
probable a posterior than the JSV(3) model. The TSVEUR_USD fits the data worse 
than TSVUSD_EUR, but not as poorly as the JSV(2) model. We see that the longer 
series confirm very clearly inadequacy of the BSV and SDF models; the two SV 
specifications with zero or constant conditional correlation coefficient are 
strongly rejected. The distances (measured by the Bayes factor) between the 
best model and the BSV and SDF models become smaller when we use the 
shorter time series.  

Of course, our m
meters of the models. It seems that these prior distributions are not very 

informative - they are quite diffuse. 
 
 
4
 
 
bivariate SV-type specifications using their Bayes factors. We considered five 
bivariate SV models, including the specification with zero, constant and time-
varying conditional correlation. The competing bivariate stochastic volatility 
models differ in assumption on conditional correlation and in the number of 
latent processes. The results indicate that the most adequate specifications are 
those that allow for time-varying conditional correlation and that have as many 
latent processes as there are conditional variances and covariances. The 
empirical results show that the explanatory power of TSV model depends on the 
ordering of modelled financial instruments. 
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