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Risk on the Polish Energy Market  
 
 
1. Introduction 
 
 During the last few years the Polish energy market has developed. The Pol-
ish Power Exchange came into existence. The Day Ahead Market (DAM) was 
the first market, which was established on the Polish Power Exchange. This 
whole-day market consists of the twenty-four separate, independent markets 
where participants may freely buy and sell electricity. The breakthrough in the 
development of the Polish Power Exchange was made on 1st July 2000, when 
the first transaction was completed on the DAM. The strength of the Exchange 
is that all participants of the market can buy and sell electric energy, regardless 
of whether they are producers or receivers of electricity.  
 Many markets attempt to compensate for the lack of equilibrium between 
supply and demand by storing goods. We do not store electricity. Electricity is 
delivered only at the moment when there is demand for it. Since 1st September, 
2001 the Balance Market (BM) has been in operation. This is a technical mar-
ket, which maintains the balance on the Polish energy market. On 1st July, 2002 
the BM introduced additional prices: Price Accounting Deviations of sale – 
PADs – and Price Accounting Deviations of purchase – PADp. These prices 
should help to forecast future demand for the electric energy on the whole-day 
and futures market.  
 Risk on the market is as high as change in the price. If we compare day's 
change in the price for petroleum at 1–3% and for gas at 2–4% with change in 
the price for electric energy at 10–50%, we can see that both producers and 
consumers of energy are forced to protect themselves against losses. In Poland 
the forward energy market is developed outside the exchange. Since 1st October 
2002, on the Polish Power Exchange we have had a futures market with the 
futures contracts on the delivery of monthly, weekly and in peak-hours 7–10 
p.m. electric energy.  
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2. Measures of risk  
 
 When we take financial decisions, at the same time we take risk. The notion 
of risk is a property of the future. We have many sources of risk: the changes in 
a price, uncertainty about fulfilling the terms and conditions of contracts, lack of 
possibility of closing a position on a financial market, the changes in law and 
the risk of a strategy. 
 If we want to estimate the future risk we have to measure it. There are a lot 
of different measures of risk. We can divide them into three groups: the measure 
of volatility, the measure of sensitivity and measures of downside risk. In this 
paper we present quantile downside risk measures, such as Value-at-Risk (VaR) 
and Conditional Value-at-Risk (CVaR) and compare the results with the meas-
ure of risk-standard deviation. 
 
2.1. Value-at-Risk 
 
 The downside risk measure measures unwilling deviations from the ex-
pected rate of return. VaR is such a loss in value, which will not be exceeded in 
a given period of time with the given probability )1,0(∈α   
 

 P(W ≤  W0 – VaR ) α=  (1)  
 

where W0 is a present value, W is a random variable, such as investment at the 
end of duration (see: Blanco (1998), Jajuga, Jajuga (1998), Ogryczak, 
Ruszczyński (2002) and Weron, Weron (2000)). 
 VaR tries to answer the question: How much money can we lose over  
a period of time T with probability α ? It is the figure that represents an esti-
mate of how much we may lose as a result of market movements in a particular 
horizon and for a given confidence level (see: Blanco (1998)). 
The definition of this potential loss depends on two main parameters: 
– the horizon over which the potential loss is measured; it is not the same to 

measure the excepted loss over a one day period as over a one week period; 
– the degree of confidence; it is a measure of the degree of certainty of the 

VaR estimate (see: Blanco (1998)). 
 The horizon can be a function of either the position or the investor. In the 
former case, the longer horizon for estimating risk can be the result of the time 
it takes for the position to be liquidated or neutralized. Risk is measured over 
the period until investment objectives are reviewed and reassessed. We must 
remember that a long period is merely the sequence of several short periods of 
risk. When choosing a horizon, consider (see: Blanco (1998)): 
– unwind period – how long, on average, does it take to reverse a market po-

sition or individual trade? 
– attention period – how often, on average, do we re-examine our portfolio 

and its mark-to-market or hedging trades? 
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– accounting period – how long does it take until the next financial invest-
ment must be done? 

 The probability of incurring losses longer than our VaR will be  
(1–α)100%, being α100% the confidence level. For example, for a 95% confi-
dence level (α = 0,05), the probability that the losses will exceed VaR is 5%. 
The common choices for a confidence level are (see: Blanco (1998)): 
– 95%; with a 95% level and a one-day horizon, losses in the excess of VaR 

will occur about once in every twenty days, 
– 99%; with a 99% level and a one-day horizon, losses in the excess of VaR 

will occur about once in every one hundred days. 
There are three main methodologies to calculate VaR: variance-covariance, 
Monte-Carlo simulation, historical simulation (see: Blanco (1998)). 
 The most commonly used of the three VaR methods is variance-
covariance. It is based on the analysis of the volatilities and correlation be-
tween the different risks. The main issues that have to be solved in order to cal-
culate analytic the VaR are the following: the systematic measurement of actual 
markets for the production of data applicable to the vertex set chosen and the 
reduction of firm exposures to a form which can be analysed using vertex data-
set. In order to be compatible with the available data, every instrument in a port-
folio needs to be reduced to a collection of cash flows in order to derive a syn-
thetic portfolio from the assets we hold. The synthetic portfolio is made up of 
positions in the risk factors or vertices for which we have volatilities and corre-
lations. The main problem of this method is to have a set of risk factors small 
enough to be manageable, but comprehensive enough to capture the risk expo-
sures of the firm. Once we construct the cash flow map, we only need to per-
form basic matrix manipulation to calculate the VaR of our portfolio. 
 Monte Carlo simulation is based on the generation of random scenarios of 
prices for which the portfolio is revaluated. Looking at the hypothetical profits 
and losses under each scenario, it is possible to construct a histogram of ex-
pected losses from which VaR is calculated. In this method we need a correla-
tion and volatility matrix to generate the random scenarios. To perform Monte 
Carlo simulation it is necessary to have pricing models for all the instruments in 
our portfolio, and it is a procedure that is computationally intensive. The main 
advantage is that this is a forward-looking assessment of risk, and it deals with 
options and non-linear positions as we conduct a full valuation of the portfolio 
for each price scenario. 
 Historical simulation consists in revaluing the portfolio of several hundred 
historical scenarios and is built on a hypothetical distribution of profit and 
losses based on how the portfolio would have behaved in the past. This simula-
tion has the advantage that it does not use estimates like in variances and co-
variances, and we do not make any assumptions about the distribution of the 
portfolio returns. However, we are assuming that the past risk reflects the future 
risk, which in energy markets is a very extreme assumption. Historical simula-
tion is definitely not the method to use to capture risk on energy markets. To 
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calculate VaR through historical simulation we need a database with historical 
prices for all the risk factors that we want to include in the simulation, and pric-
ing models to revaluate the portfolio of each price scenario. We can think of  
a historical simulation as a special case of the Monte Carlo simulation in which 
all the scenarios are defined ex-ante according to the past behaviour of market 
prices. In Table 1 we compare the three methods: 
 

How we use the variance-covariance method to calculate VaR: 
Noticed by (W) a -quantile we can write: αQ α
 (W) = WαQ 0 – VaR. (2) 
Noticed by (R) a -quantile of rate of return we can write: αQ α

 (R) =αQ
0

0

W
WW −α   or  (R) =αQ )

W
W

ln(
0

α . (3) 

We have now 
  (R)WQ VaR 0α−= or , (4)  )We-(1 VaR 0

(R)Qα=
where R means rate of return1 (see: Weron, Weron (2000)). 
 

VaR for single contract on electric energy:  
Value of contract in moment t we can write as (see: Weron, Weron (2000)): 
 )KU(qX tt −= , (5) 
where Ut is running price of energy, K price of realization of contract,  
 q = , (6) WhN ⋅⋅
N is the number of days of delivery of energy, h is the number of hours of de-
livery every day, W is the amount of energy delivered every hour, q > 0 for long 
position, q < 0 for short position. 
When we analysis changing of price of contract during (t-1,t) we have: 
 . (7) )U(Dq)X(D,UqX 222 Δ=ΔΔ=Δ
We can estimate variance of contract on base historical data by  

 )
U

)U(D)
U
U(D(),

U
U(DUq)X(D 2

2
22222 Δ

≈
ΔΔ

=Δ . (8) 
 

Standard deviation for values of contract we can write as: 
 

 ,qUK σ=σ  (9) 
 

where  is a variability of price of energy. σ
, (R)qUQ VaR α=  2)qUe(1 VaR (R)Qα−= . (10)

                                                 
1 If we assume normal distribution of rate of return, we can write for example 

Q0,01(R ) = 2,33 Q0,05(R ) =1,64, if we assume normal distribution of logarithmic rate of 
return, we have  = 2.33, =1.64. )e-(1 (R)Q 01,0 )e-(1 (R)Q 05,0

2 With the assumption of normal distribution we have: VaR99% = 2.33qUσ, VaR95% 

= 1.64qUσ. 
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Table 1. Methodologies to calculate VaR 
 

 Variance-Covariance Monte Carlo Simula-
tion 

Historical Simu-
lation 

Easiness of Interpretation Intuitive, although intermedi-
ate steps difficult to explain 

Intuitive, but computa-
tional aspects more 
difficult to explain in a 
non-technical fashion 

Very intuitive and 
easy to explain 
and interpret 

Accuracy of VaR estimates Depends on validity of as-
sumptions (low optionality, 
stable variances- covariance, 
normality of return) 

Depends on assumptions 
about variance and 
covariance, number of 
simulations and distribu-
tion of prices  

Is the historical 
period choice 
representative of 
all possible future 
market scenarios? 

Distributional assumptions 
about portfolio returns 

Portfolio returns are inde-
pendents and distributed 
normally 

None, only distributional 
assumptions about risk 
factor returns to simulate 
random paths. 

None, but implicit 
assumption that 
past return behav-
iour is representa-
tive of future 
returns. 

Volatilities and Correlation 
matrices 

Required, correlation matrix 
must be positive-definite. 

Required, correlation 
matrix must be positive-
definite. 
 

Not required. 

Amount of historical data 
needed for estimation of 
volatilities/correlation or for 
performing historical simu-
lation 

Exponentially weighted 
moving average methods 
require only a few months of 
historical data. 

Exponentially weighted 
moving average methods 
require only a few 
months of historical data. 

Depends on mar-
ket, structural 
changes, and 
seasonality effects.

How does it deal with 
optionality 

Delta method. It can be a 
poor approximation for 
portfolios with strong option-
ality, specially with exotic 
options. Delta-gamma ap-
proach improves treatment 
but still not perfect. 

Full valuation approach, 
we can look at changes 
in volatilities as well as 
prices of the underlying 
from day to day. 

Full valuation 
approach. 

Data requirements Can use risk metrics dataset 
or create own from historical 
price series. 

Can use risk metrics 
dataset or create own 
from historical price 
series. 

Absolute depend-
ence on historical 
data, risk factors 
not represented in 
the dataset is 
ignored. 

Analysis of VaR for Risk 
management 

Incremental and component 
VaR analysis possible, possi-
ble to go from risk measure-
ment to risk management. 

Study of worst-case 
hypothetical scenarios, 
does not allow incre-
mental VaR analysis. 

Absolute depend-
ence on past 
events, does not 
allow incremental 
VaR analysis. 

Computational Inten-
sity/hardware requirements 

Simple matrix multiplication 
once cash flow map is ob-
tained, relatively fast for most 
portfolios. 

Computationally inten-
sive, all the portfolio 
instruments must be 
revalued for each price 
scenario. 

Fairly easy to 
implement, but all 
instruments pric-
ing functions are 
required. 

Length of horizon Static approach, assumes 
portfolio is valued on the 
effective date of calculation, 
most effective for very short 
time horizons. 

Introduces the effects of 
time on portfolio returns 
mark-to-horizon. 

Can be adjusted, 
but there is a 
problem a data 
availability. 
 

 

Source: C. Blanco (1998). 
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Let U means running value of energy and R is a rate of return then we have 
(see: Weron, Weron (2000)): 
 

VaR for prices of electric energy: 
    or   , U)R(QVaR 01,0%99 −= U)e-(1VaR (R)01,0Q

%99 =

    or   . U)R(QVaR 05,0%95 −= U)e-(1VaR (R)Q
%95

0,05=
 

VaR for contract on electric energy: 
 Uq)R(QVaR 01,0%99 ⋅⋅−=   or  , Uq)e-(1VaR (R)Q

%99
01,0 ⋅⋅=

 Uq)R(QVaR 05,0%95 ⋅⋅−=   or  . Uq)e-(1VaR (R)Q
%95

0,05 ⋅⋅=
 

VaR for portfolio of electric energy: 
With the assumption of normal distribution we can write: 

 ∑ ∑∑
= = >

+−=
n

1i

n

1i

n

ij
jjiiijji

2
i

2
i

2
i%99 UUqq2Uq33.2VaR σσρσ , 

 

 ∑ ∑∑
= = >

+−=
n

1i

n

1i

n

ij
jjiiijji

2
i

2
i

2
i%95 UUqq2Uq64.1VaR σσρσ ,  

where Ui – is a price of ith  contract of energy,  – is a variability (standard 
deviation) of price of i

iσ
th contract of energy, ijρ – is a correlation coefficient 

measurement of ith and jth  contract of energy, n – is a number of components of 
portfolio (see: Weron, Weron (2000)). 
 
2.2. Conditional Value-at-Risk 
 
 Next downside measure is CVaR. CVaR can be called the Expected Short-
fall – ES (see: Jajuga, Jajuga (1998), Ogryczak, Ruszczyński (2002)): 
 ES (X) = E{X | X α ≤  (X)}. (11) αQ
 

The VaR quantity represents the maximum possible loss, which is not exceeded 
with the probability α . The CVaR quantity is the conditional expected loss 
given the loss strictly exceeds its VaR:  
 

 ES α (R) = E{R | R ≤  VaR (R)}.  (12) α
 

CVaR defined as the mean of the quantile of worst realizations. The definitions 
ensure that the VaR is never more than the CVaR, so portfolios with low CVaR 
must have low VaR as well. CVaR is a function of α for fixed x.  

For discrete distribution  {(Ri, pi )  i = 1, …, n } we can write: ∑
=

=
n

1i
i 1p
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 ES α (R)  ∑∑
==

α=
α

=
k

1i
i

k

1i
ii p,pR1 .  (13) 

 

For continuous distribution with the cumulative distribution function  we 
defined this measure as: 

X
F

 ∫
α

−
α ≤α<

α
=

0

)1(
X 10dt)t(F1ES , (14) 

where . }p)(F;inf{)p(F X
)1(

X ≥ηη=−

 CVaR is an alternative measure of risk, but has better properties than VaR. 
Recently Pflug (2000) proved that CVaR is a coherent risk measure having the 
following properties: transition-equivariant, positively homogeneous, convex, 
monotonic, stochastic dominance of order 1, and monotonic dominance of order 
2. Minimizing the CVaR of portfolio is closely related to minimizing VaR, as 
already observed from the definition of these measures (see: Rockafellar, 
Uryasev (2000)).  
 

Let U means running value of energy and R is a rate of return then we have: 
 

CVaR for prices of electric energy: 
 (R)U  or  01.0%99 ESCVaR = 05.0%95 ESCVaR = (R)U. 
Let q =  like for VaR,  then we have:  WhN ⋅⋅
 

CVaR for contract on electric energy: 
   or  qU)R(ESCVaR 01.0%99 = qU)R(ESCVaR 05.0%95 = . 
If we write R like a rate of return of portfolio, we can write: 
 

CVaR for portfolio of electric energy: 

  (R) , 01.0%99 ESCVaR = i

n

1i
i Uq∑

=

   (R) . 05.0%95 ESCVaR = i

n

1i
i Uq∑

=

 
 
3. Risk on the Polish Energy Market 
 
 For estimation of risk on the Polish Energy Market we took into considera-
tion the price of contracts on electric energy, the price of electric energy on 
DAM and BM quoted from 01. 10. 2002 to 20. 12. 2002. In Table 2 we pre-
sented average measures for each value. Prices and rates of return for each value 
relate to 1 MWH electric energy. Already in the initial analysis in Table 2 we 
can see, that on the BM and the DAM change in the price is higher than on the 
futures market. The prices of contracts are more stable, standard deviation 
amounts to 7% of the level of the average price for the most diverse contract 
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FFW48-02. On the BM and the DAM variation coefficients of prices range 
from 11% to 35%. This analysis shows, that we should look at changes in prices 
in distribution tails. We can say, that on the average in the investigated period 
the price of energy on the whole-day market had an increasing tendency and we 
cannot say the same about prices on the futures market. 

 
Table 2. Average measures of price and rates of return of contracts 
 

Parameters of price Parameters of rates of 
return 

Parameters of loga-
rithmic rates of return 

Contracts 
on electric 

energy mean s V mean s mean s 
FFM01-03 125.43 1.63 0.01 -0.0001 0.0055 -0.0001 0.0055
FFM02-03 126.23 1.53 0.01 -0.0254 0.1603 0.0010 0.0051
FFW01-03 122.89 3.82 0.03 -0.0024 0.0241 -0.0027 0.0247
FFW02-03 126.69 5.89 0.05 -0.0045 0.0309 -0.0050 0.0313
FFW03-03 124.95 2.15 0.02 -0.0026 0.0093 -0.0026 0.0095
FFW04-03 124.98 2.11 0.02 -0.0025 0.0091 -0.0026 0.0093
FFM13-02 124.11 4.80 0.04 0.0015 0.0514 0.0002 0.0511
FFW45-02 127.79 2.73 0.02 0.0005 0.0238 0.0002 0.0238
FFW46-02 125.59 5.34 0.04 0.0000 0.0405 -0.0009 0.0413
FFW47-02 128.22 5.48 0.04 -0.0033 0.0313 -0.0039 0.0335
FFW48-02 125.77 9.03 0.07 -0.0062 0.0389 -0.0070 0.0400
FFW49-02 124.94 3.60 0.03 0.0045 0.0368 0.0038 0.0365
FFW50-02 122.73 4.91 0.04 -0.0019 0.0447 -0.0030 0.0449
FFW51-02 122.93 4.44 0.04 0.0019 0.0403 0.0011 0.0402
FFW52-02 116.35 3.24 0.03 -0.0012 0.0331 -0.0017 0.0331
PW 43-02 144.46 3.08 0.02 0.0026 0.0229 0.0023 0.0231
PW 44-02 149.38 6.51 0.04 0.0057 0.0293 0.0052 0.0289
PAD  107.09 37.86 0.35 0.0087 0.1418 -0.0004 0.1344
PADs 236.67 61.08 0.26 0.0086 0.1379 -0.0002 0.1322
PADp 82.12 9.70 0.12 0.0018 0.0625 -0.0001 0.0616
DAM 108.44 24.36 0.22 0.1889 2.0467 0.0001 0.4274
 
 In Table 3 we presented the results of value VaR and CVaR, which we cal-
culated with the use of the variance-covariance method. We should remember 
about the differences between the interpretation and magnitude of these meas-
ures. When we look at Value at Risk we can say, that with the probability of 
0.99 on contract FFM01-03 we will not lose more than 3.18 zł/MWh. On con-
tracts FFM02-03 with the probability off 0.95 we will lose nothing. We can 
incur the highest loss on contract FFW47-02, but with the probability off 0.99 
this loss will not exceed 20.25 zł/MWh. In the same period of time on the 
whole-day market our losses with the probability off 0.99 will not exceed the 
value from 14.38 to 77.56 zł/MWh (between 7.78 and 40.55 zł/MWh with the 
probability off 0.95). CVaR99% informs us about average of the 1% of the high-
est loss. For example: CVaR99%  = 3.18 for FFM01-03 means, that the average 
of 1% of the worst loss equals 3.18zł/MWh, CVaR95% = 1.9 means that the av-
erage of the 5% of the worst loss on this contract equals 1.9 zł/MWh. On the 
DAM the value VaR99% = 28.50 informs, that on this market with the probabil-
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ity off 0.99 we do not lose more then 28.50zł/MWh and with the probability off 
0.01 we may lose more. With the same degree of confidence on this market 
CVaR99% = 34.73, informs that 1% of the worst loss we may on average lose 
34.73zł/MWh. 
 
Table 3. Quantile downside risk measures of contracts 
 

Rates of return Logarithmic rates of return 

VaR CVaR VaR CVaR 

Contracts 
on elec-
tric en-
ergy 

VaR99% VaR95% CVaR99% CVaR95% VaR99% VaR95% CVaR99% CVaR95%

FFM01-03 3.18 1.00 3.18 1.90 3.18 1.00 3.18 1.91
FFM02-03 1.01 0.00 1.01 0.03 1.01 0.00 1.01 0.03
FFW01-03 9.69 9.69 9.69 9.69 9.69 9.69 9.69 9.69
FFW02-03 10.51 10.51 10.51 10.51 10.51 10.51 10.51 10.51
FFW03-03 4.51 4.51 4.51 4.51 4.51 4.51 4.51 4.51
FFW04-03 4.42 4.42 4.42 4.42 4.42 4.42 4.42 4.42
FFM13-02 14.01 10.60 14.01 12.31 14.01 10.60 14.01 12.32
FFW45-02 6.63 5.72 6.63 6.18 6.63 5.72 6.63 6.18
FFW46-02 14.82 11.22 14.82 13.02 14.82 11.22 14.82 13.04
FFW47-02 20.25 2.89 20.25 11.57 20.25 2.89 20.25 11.89
FFW48-02 16.95 12.24 16.95 14.59 16.95 12.24 16.95 14.62
FFW49-02 7.17 7.17 7.17 7.17 7.17 7.17 7.17 7.17
FFW50-02 13.46 7.50 13.46 10.48 13.46 7.50 13.46 10.52
FFW51-02 12.58 6.26 12.58 9.42 13.48 6.04 13.48 9.82
FFW52-02 11.91 5.93 11.91 8.92 11.91 5.93 11.91 8.96
PW43-02 8.46 8.46 8.46 8.46 -8.46 8.46 8.46 8.46
PW44-02 10.46 10.46 10.46 10.46 10.46 10.46 10.46 10.46
PAD  38.82 19.91 46.26 30.68 38.82 19.91 46.52 31.33
PADs 77.56 40.55 95.05 63.96 77.56 40.55 95.90 65.17
PADp 14.38 7.78 16.59 11.63 14.38 7.78 16.69 11.72
DAM 28.50 16.98 34.73 24.70 28.50 16.98 34.88 24.94
 
 In the next step we build the portfolios. The results of hedge positions on 
the energy market by optimal choice portfolio are in Table 4. The hedge posi-
tion is possible owing to the correlation between portfolio’s components.  

 
Table 4. Value of VaR99% for portfolios of contract noticed on Polish Power Exchange 
  

No. Portfolios VaR99%
1  FFW45-02 FFM01-03 2005.26 
2 FFW50-02 FFM01-03 FFW45-02 2044.88 
3  FPW43-02 FFW48-02 1953.39 
4  FFM01-03 FFW50-02 1801.87 
5  FFM01-03 FFW52-02 2170.64 
6  FFM01-03 FPW43-02 2108.67 
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4. Conclusions 
 
 Taking into consideration quantile downside risk measures for participants 
of the market interested in short positions, it is more profitable to invest in the 
futures market. Values of prices and rates of return for the lower distribution tail 
are higher on the futures market and so are the values of conditional downside 
risk measures. This market can be characterized as more stable at the moment. 
 The quantile values for the upper distribution tail were not presented in this 
paper. For VaR this will be analogous, we can interpret them not as a fall but as 
the height of price and rate of return values. Also average conditional values 
will be similar for the upper tail of prices and they will be closer to maximum 
values. Accordingly we can conclude, that for participants of the market inter-
ested in long positions it is safer to invest on the futures market. 
 Summing up it should be stated, that quantile measures are superior to aver-
age measures. Participants of the market, not only of the market of energy, want 
to draw benefits from their investments and they are prepared, in return, to take 
some limited risk resulting from their opportunities and expectations. In this 
case, quantile measures of risk give them a more precise answer than average 
measures. They mark extreme, not only average, positions of values and they 
can also act as a signal for buying or selling. 
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