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1. Introduction 
 
 The most distinctive feature of a threshold model is its ability to analyse  
a complex stochastic system by decomposing it into simpler subsystems. The 
basic idea is the local approximation over the states, i.e. the introduction of re-
gimes via thresholds (see: Tong (1990)). On the other hand, a threshold model 
consists of several linear models nested in a non-linear structure. Its idea comes 
form the switching regression concept which capture a variety of different types 
of switching rules. The „threshold principle” in time series modelling was intro-
duced by Tong in 1977, and developed by Tong and Hansen (see: Tong (1990) 
and Hansen (1996)). Threshold models are widely used in the analysis of many 
economic processes such as business cycles (Proietti (1998)) and unemploy-
ment (Hansen (1997)). 
 Models of financial returns usually combine two parts: i.e. the conditional 
mean and the conditional variance. One of the simple univariate cases is the 
ARMA-GARCH representation. On the other hand, financial time series 
(mainly returns) are frequently asymmetrically distributed. This is because in-
vestors may react in one way in the case of high returns and in another when the 
returns are low. It seems that the threshold models may be a very useful alterna-
tive in the analysis of the asymmetric behaviour of the investors.  
 In the presented paper the class of TAR-GARCH models is used to describe 
both a conditional mean due to regimes given by threshold parameters and  
a conditional variance. The aim of the paper is to present some methods of in-
ference within a threshold framework with application to Polish financial time 
series. The paper consists of five sections. In the next section the model is con-
sidered. The third section presents the statistical inference using the self-
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exciting threshold autoregressive model, namely testing for linearity in the pres-
ence of ARCH, parameter estimation and forecasting. The empirical results are 
presented in the section 4. The final remarks are summed up in the fifth section. 
 
 
2. Threshold model representations 
 
 Let Yt denote k-dimensional random vector. Let us consider the model  
 , (2.1) tttt J

t
J

t
J

t
J

t CHYAYBY +++= − ε1

where Jt is a random variable taking values of a finite set of natural numbers 
, { }1 2 3, , ,..., p B Jt , AJt , H Jt  are k×k - dimensional matrices of the coeffi-

cients, εt is the k – dimensional white noise and  is a constant vector. 
The model (2.1) is called a canonical form of the threshold model. It defines  
a wide class of the models depending on the choice of J

C Jt

t.  
 When Jt is the function of Yt., we obtain SETAR models (self-exciting 
threshold autoregressive model). The SETAR(p; k1, k2,...,kp) model is defined in 
the following way 
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 The more convenient form of (2.2) is the following 
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The threshold variable is in (2.3) lagged , but it can be also an exogenous 

variable, say lagged . 
tY

tZ
For two regimes we have the following I(y) function 
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When all β β β0 1, ,..., k  parameters are zeros then (2.5) becomes the linear auto-
regressive model. 
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 Letting εt  to be a martingale difference sequence, we can modify the clas-
sic SETAR model by allowing conditional heteroscedasticity. Let us consider 
the case when the conditional variance changes over time, but it does not 
change within the regimes. As the result we have the second equation defining a 
GARCH-type model 
  (2.6) (εt t tN h| ~ ,Ψ −1 0 )
where: 

 , (2.7) h a ht i t i
i

q

i t i
i

p

= + +−
=

−
=

∑ ∑0
2

1 1
α ε β

p ≥ 0, q > 0 and α α0 0 0> ≥, i  for i q= 1 2, ,..., , βi ≥ 0  for i p= 1 2, ,..., . 
(see: Bollerslev (1986)). 
 
 
3. Statistical inference within the TAR framework 
 
3.1. Testing for the TAR model vs. the linear one in the presence  

of ARCH 
 
 In testing for threshold non-linearity vs. the linear alternative (e.g. 

βα =:0H  in (2.5)) one has to remember that the threshold parameter r is un-
known and unidentified, as a rule. Thus the asymptotic distribution of LM sta-
tistics is non-standard. Usually the LR type tests are used. The testing procedure 
while the residuals constitute the white noise process is described in Tong 
(1990) and Osińska, Witkowski (1997). 
 Hansen (1996), (1997) indicates, that the presence of ARCH affects the 
testing for non-linearity in the TAR models. In the case of the changing the 
conditional variance the following procedure is recommended. An appropriate 
test is the Wald statistics, which is consistent in the case of heteroscedasticity. It 
is constructed for each value of the threshold parameter r. The test has the fol-
lowing form: 

  ( ) ( )( ) ( )( ) ( ) ( )( )[ ] ( )W r R r R M r V r M r R R rn n n n= ′
′

− − −

θ θ
1 1 1

 (3.1) 

where 
 [ ]βαθ = , 
 [ ]IIR −= , 
 , ∑ ′= )()()( ryryrM ttn

 , ∑ ′= 2)()()( tttn ryryrV ε

 - is a set of lagged values of in each regime.  )(ryt tY
An appropriate statistics for is 0H
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 ( )rWW n
Rr

n
∈

= sup . (3.2) 

The critical values are generated using the bootstrap technique in the following 
way: let  be a sequence of random numbers such as , t=1,2, ..., n 

and let . Using empirical observations , regress  conditionally 

on  and . Taking the first regression we obtain the residual variance 

, and the second regression gives . Assuming that  statistics con-
verges to the F distribution, which is the limit distribution when the threshold 
parameter 

*
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r  is known, we may compute ( )( ) 2*2*2** /)( nnnn rnrF σσσ −=  and 

. Hansen (1996) showed that the distribution of converges to 

 distribution, then repeating the bootstrap procedure, and computing  we 
obtain the asymptotic distribution of . The asymptotic p-values are given by 

adding the ratio of bootstrap samples for which  exceeds the computed value 
of . 
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3.2. The parameter estimation of the TAR model 
 
The parameters of the TAR models are estimated using the OLS method, condi-
tionally on whether the parameters d, r and k are known or not. The parameters 
are usually not known and have to be estimated (see: Witkowski (1999)). 
Let us consider the following modification of (2.3) model: 
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The estimation proceeds in two steps (see Tong (1983), (1990)): 
 
The estimation of parameters standing with lagged variables with fixed d, r, 
k1, k2
 
Let 

 [ ]α α α αi
i i

k
i
i

i= 0 1 1 2, ,..., ,=

d

,  

 . ( )k k k= max , ,1 2
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Let  
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The estimate of ai  may be expressed in the following way: 

 ( )a A A A y ii i
T

i i
T

i= =
−1

1 2, , . 
 
The estimation of all parameters set 
 
Let d, r be fixed at d0 r0. Let L denote the maximum order for each linear auto-
regressive model within the regimes. Denote: 
 ( ) ( ) ( )AIC d r AIC k AIC k0 0 1 2, $= + $ , (3.5) 
where 
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 (3.6) 

 εi i i iy A a i= − =, 1 2,

)

. (3.7) 

Hence, minimising (3.6) we obtain  and  with fixed d, r. Under (3.5), 

 is determined. 

$k1
$k2

(AIC d r0 0,
Finally, we estimate the delay parameter d and threshold parameter r: 

  (3.8) ( )
{ } { }

( )AIC d r AIC d r
d T r m

$, $ min min ,
, ,..., , ,...,

= ⎧
⎨
⎩

⎫
⎬
⎭∈ ∈1 2 1 2τ τ τ

where T is the maximum value of d and {τ1,τ2,...,τm} is a set of potential candi-
dates for the estimation of r. 
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3.3. Forecasting procedures using threshold models 
 
 Forecasting based on the non-linear models is mostly often based on the 
Monte Carlo method (see Brown, Mariano (1984), Clements, Smith (1997)). 
The MC method gives an asymptotically unbiased predictor, while the standard 
deterministic predictor is usually biased. Taking a great number of replications 
the MC predictor is usually more efficient – taking the mean squared error – 
than the deterministic one. There are however some disadvantages. The strong 
requirement of the MC method is a prior assumption of the innovations distribu-
tions. While it is improperly specified, the predictor becomes asymptotically 
biased. The alternative method is based on the bootstrap technique, which uses 
the estimated residuals of the model instead of the generated innovations. 
 Three methods of forecasting the threshold models are discussed below: the 
mean squared error method, the Monte Carlo and the bootstrap. 
 
The mean squared forecast error method 
 
 The mean squared forecast error method allows computing forecasts using 
any type of the TAR model. For the model (2.5) the practical way of taking the 
forecast is to compute a weighted average of the forecasts given separately from 
the first and second regimes. The weights are usually the probabilities that the 
forecasted series is in the first or in the second regime within the forecast hori-
zon. Thus we have: 

 ( ) ( ) ,
ˆ

ˆ
ˆˆ1ˆˆ

1

1
11,11,2,21,11 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−+⋅−+=

−+

−+
−++−+−+

kn

kn
knknkknkkn

YraaYpYpY
σ

φσ  

   (3.9) 
where 
 , ....3,2=k
  ,ˆˆ,ˆˆ

11,20,2,211,10,1,1 −++−++ +=+= knknknkn YaaYYaaY

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Φ=

−+

−+
−

1

1
1 ˆ

ˆ

kn

kn
k

Yr
p

σ
. 

φ,Φ  denote correspondingly the standard normal cumulative distribution and 

density . The formula (3.9) is recursive. The first step of the procedure 
is as follows: 

( )N 0 1,

 ( ) ( ).ˆ
10101 rIYbbYaaY nnnn ⋅+++=+  

The formula (3.9) requires the standard error of prediction $σ n k+ −1  to be esti-
mated. It can be computed in the following way: 
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  .ˆˆ 22
11 knkkn Yp +−−+ −+⋅ εσσ

The above formula is proper only in the case when the residual variances in 
each regime are mutually equal to . .2

εσ
 
The Monte Carlo method 
 
 The Monte Carlo method is a simple simulation based method of forecasting 
used for a broad class of the non-linear models. The forecast for one period 
ahead is identical, i.e.  
 ( ) ( ).ˆ

10101 rIYbbYaaY nnnn ⋅+++=+  (3.10) 
For a longer forecast horizon ( k > 1) a following sequence of the forecasts is 
computed , such as j

kn
j

n
j

n YYY +++
ˆ,...,ˆ,ˆ

32
 

 ( ) ( ) h
jnnn

j
n rIYbbYaaY ,211101102

ˆˆˆˆ ξ+⋅+++= ++++ , (3.11) 

 ( ) ( ) h
jn

j
n

j
n

j
n rIYbbYaaY ,322102103

ˆˆˆˆ ξ+⋅+++= ++++  (3.12) 
and 
 ( ) ( ) h

jkkn
j

kn
j

kn
j

kn rIYbbYaaY ,1110110
ˆˆˆˆ ξ+⋅+++= −+−+−++ , (3.13) 

  ,,...3,2,1 Nj =
 

where  constitute a set of independent random variables, normally 
distributed, independent from ε. The superscript h means, that the variance of 
the random variable depends on the regime of the process, i.e. 

h
jk

h
j

h
j ,,3,2 ,, ξξξ

( ).,0~ 2
, h
h

ji N σξ  
Repeating the procedure given by the relations (3.11) - (3.13) for  
we are able to compute the final result as 

Nj ,...,3,2,1=

 

 .ˆˆ
1

1 ∑
=

++ =
N

j

j
knNkn YY  (3.14) 
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The bootstrap method 
 
 The idea is very similar to the Monte Carlo method, the difference is that 
the set  is the result of the independent sampling from the esti-

mated error vectors 

h
jk

h
j

h
j ,,3,2

ˆ,ˆ,ˆ ξξξ

21 ˆ,ˆ εε .  
 
 
4. Estimated TAR-GARCH models for weekly returns from shares 

of banks 
 
 The objective of the research is the analysis of weekly returns of stocks 
listed at the Warsaw Stock Exchange using threshold models. The parameter 
estimates were obtained using EViews 4.0 software. The following assumptions 
were made: 
a) there is one or two threshold parameters (i.e. two or three regimes), 
b) the minimum and maximum value of parameter d is equal to one and five 

respectively, 
c) the maximum order for each linear autoregressive model is equal to 5. 
 The results of the estimation are included in the following two tables. In the 
first table the SETAR-GARCH models are presented whereas in the second one 
the TAR-GARCH models are shown, where the Warsaw Stock Exchange Index 
is the threshold variable. 
 
Table 1. Estimates of SETAR-GARCH model (see equation (2.3)) 
 

Independent Parameters of SETAR-GARCH model 
 α 0

1  h1  r1  α 0
2  α1

2  α 2
2  α 3

2  h2  

 0.00469 
(0.0026) 

0.0403 0.00188 -0.0061
(0.0029)

-0.0712
(0.0765)

0.2437
(0.0719)

-0.1571 
(0.0826) 

0.0268 

WIG r2  α 0
3  α1

3  h3  d  SD   

 0.0187 0.00518
(0.0034)

0.1901
(0.096) 

0.0395 4 0.0376   

 
( ) ( )

h ht t t= + +− −0 000123 0 0493 0 8604
0 0001 0 0246 1

2

0 0912 1. . .
( . ) . .

ε  

 α 0
1  α1

1  h1  r1  α 0
2  α1

2  α 2
2  α 3

2  
 -0.0114 

(0.0065) 
-0.1840
(0.0914)

0.0809 0.00449 0.0128
(0.0074)

-0.0557
(0.1394)

0.0258 
(0.0639) 

0.1441 
(0.0563) 

BIG h2  r2  α 0
3  h3  d  SD   

 0.0544 0.1194 -0.0086
(0.0351)

0.1646 1 0.0778   

 
( ) ( ) ( )

ht t t= + +− −0 0039 0152 0158
0 000148 0 0525 1

2

0 0436 2
2. . .

. . .
ε ε  
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Table 1 continued 
 

 α 0
1  h1  r1  α 0

2  α1
2  α 2

2  h2  r2  

 0.00158 
(0.0042) 

0.0472 -0.0135 -0.0053
(0.0036)

-0.0294
(0.0848)

-0.2287
(0.0705)

0.0308 0.00609 

BOS α 0
3  h3  d  SD     

 0.00386 
(0.0041) 

0.0478 4 0.0442     

 not significant ARCH efect 
 α 0

1  α1
1  h1  r1  α 0

2  α1
2  α 2

2  α 3
2  

 -0.0023 
(0.0027) 

-0.1367
(0.0544)

0.0472 0.0134 0.00949
(0.0262)

-0.1700
(0.110) 

-0.2978 
(1.195) 

0.2945 
(0.113) 

KREDYT α 4
2  h2  r2  α 0

3  h3  d  SD  

 -0.3381 
(0.108) 

0.0416 0.0307 0.0105
(0.0069)

0.0695 2 0.0521  

 
( ) ( ) ( )

h ht t t= + +− −0 0000217 0 0521 0 939
0 0000108 0 0107 1

2

0 0109 1. . .
. . .

ε  

 α 0
1  α1

1  α 2
1  α 3

1  h1  r1  α 0
2  h2  

 -0.0026 
(0.0028) 

-0.1347
(0.0493)

-0.0261
(0.0657)

0.1013
(0.0489)

0.0469 0.0307 0.0105 
(0.0069) 

0.0695 

KREDYT* d  SD       
 2 0.0525       
 

( ) ( ) ( )
h ht t t= + +− −0 0000212 0 0521 0 939

0 0000108 0 0107 1
2

0 0109 1. . .
. . .

ε  

 
Table 2. Estimates of TAR-GARCH model (see equation (2.3)) 
 

Independent Parameters of TAR-GARCH model 
 α 0

1  h1  r1  α 0
2  α1

2  α 2
2  α 3

2  α 4
2  

 -0.0005 
(0.0035) 

0.0455 -0.0094 0.00627
(0.0030)

-0.101 
(0.081) 

0.0422
(0.067) 

-0.0492 
(0.065) 

-0.0648 
(0.066) 

BPH α 5
2  h2  r2  α 0

3  h3  d  SD  

 0.1928 
(0.069) 

0.0577 0.0700 0.0331
(0.017) 

0.0776 1 0.0541  

 not significant ARCH effect 
 α 0

1  α1
1  h1  r1  α 0

2  α1
2  α 2

2  α 3
2  

 -0.0006 
(0.0091) 

0.2834
(0.116) 

0.0643 -0.0431 -0.0284
(0.023) 

0.6890
(0.271) 

-0.0305 
(0.306) 

-0.6351 
(0.280) 

BRE α 4
2  h2  r2  α 0

3  h3  d  SD  

 -0.9120 
(0.367) 

0.0870 -0.0319 0.00308
(0.0030)

0.0581 4 0.0601  

 
( ) ( )

ht t= + −0 00305 01605
0 00024 0 0669 1

2. .
. .

ε  
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Table 2 continued 
 

 α 0
1  h1  r1  α 0

2  α1
2  α 2

2  h2  r2  

 -0.0028 
(0.0074) 

0.0649 -0.0318 -0.0008
(0.0057)

-0.4713
(0.124) 

-0.266 
(0.076) 

0.0458 -0.0094 

BZWBK α 0
3  α1

3  α 2
3  h3  d  SD   

 0.0072 
(0.0046) 

-0.0871
(0.069) 

0.1544
(0.064) 

0.0673 1 0.0627   

 not significant ARCH effect 
 

* denotes SETAR with 2 regimes, SD denotes standard deviation of residuals. 

 
 Taking into account the above results the conditionally heteroscedastic ef-
fect was rather strong. There is only one threshold model with two regimes due 
to models with three regimes fitted to data for almost all series better (according 
to AIC criterion) than the others. It should be said, that linear models explained 
dynamic of returns worse than threshold ones so they were out of our interest.  
The estimated models show that rates of return behave in quite a different man-
ner when compared between regimes. It can be specifically seen when the 
threshold variable changes its sign. For example, for BPH, we observe constant 
value with no autocorrelation when  is less than –0,0094 and bigger 
than 0,0700 (regime I and III) while in the middle regime we have significant 
autocorrelation. Such a case is very often in the presented examples. This means 
that returns demonstrate stronger tendency to be serially correlated in the mid-
dle regime than in the extreme one. 

1−tWIG

 The next table and graph shows what role the regimes play. Let us notice 
how often time series changes state over a whole considered time period. 
 
Table 3. The “switching” property of SETAR model for BIG (see second row in  

table 1) 
 

Regime Number  
of observations 

Number of switch-
ing 

between regimes 

The longest period of 
staying in one regime 

  1→2: 93   
1 253 no switching: 147 8 
  1→3: 13   
  2→1: 92   

2 176 no switching: 79 8 
  2→3: 5   
  3→1: 14   

3 22 no switching: 4 4  
  3→2: 4  
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Fig. 1. First 80 observations for BIG return – regimes 
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The lagged variable determines the regime in the following way 
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 The prediction of returns in the case of the WSE stocks considered in sec-
tion 4 within the threshold framework was presented in details in Jeziorska-
Pąpka, Osińska, Witkowski (2004). The consistency of the direction of the fore-
casts was satisfactory in general. It was independent of the chosen method of 
forecasting. In many cases the forecast direction was the same as the realisation 
in 80% and even in 100%. The forecasting using threshold stationary models is 
recommended for shorter horizons (up to 5 periods ahead). 
 
 
6. Final remarks 
 
 Non-linear models belonging to the switching regression class do not de-
scribe stock returns with the highest precision. We can still observe some other 
non-linearities, for example the GARCH effect. However taking the  
TAR-GARCH combination gives better results then the AR-GARCH, which 
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was the most popular in the literature. The TAR-GARCH model is better from 
the loss of information point of view as well as for its forecasting behaviour.  
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