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A bstract Time series forecasting is one of the most important issues in the financial
econometrics. In the face of growing interest in models with continuous time, as well as rapid
development of methods of their estimation, we try to use the diffusion models to modeling and
forecasting time series from various financial markets. We use Monte-Carlo-based method,
introduced by Cziraky and Kucherenko (2008). Received forecasts are confronted with those
determined with the commonly applied parametrical time series models.
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1. Introduction

Models with continuous time and its particular case — diffusion models are
exceptionally important class of models. On the developed financial markets
there are available quotations containing full information about transaction
prices, so called tick-by-tick data. It provides natural motivation to applying
diffusion models or jump diffusion models to examination of financial
instruments price series. Diffusion models were initially used to short-term rate
modeling (Merton, 1973; Vasicek, 1977; Cox, at al. 1985). They gained in
importance in the early 70s, when Black and Scholes (1973) introduced
European call and put option pricing model in which the underlier price was
modeled with simple diffusion model called Geometric Brownian Motion.
In the following years many modification of Black-Scholes models were
introduced. Merton (1974) supposed additionally that the risk-free rate is
modeled by diffusion model, and Heston (1993) assumed that the volatility
process is described by mean reverting diffusion models. Forms of Black-
Scholes formula were introduced for american options, term options and even
volatility index options, which had just appeared on the market.
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Other application areas of models with continuous time are issues
concerning modeling and forecasting interest rates (term structure) and
valuation of very complicated derivatives based on debt instruments. This
subject was brought up among others by Jagannathan at al. (2004), which
applied multidimensional CIR models to caps and swaptions pricing, Tamba
(2006), which used Hull-White diffusion model to Bermudian swaption pricing,
and Mannolini, Mari, Reno (2008), which priced caps and floors by extended
CIR models.

The aforementioned derivatives are of outstanding significance. They
played the crucial role in risk management and in aggressive investment
strategies. The first hedging strategies were proposed by Black and Scholes
(1973). Nowadays there are strategies which allow to hedge the positions in
swaption (Javaheri at al., 2004; Howison at al., 2004) and VIX Options
(Psychoyios, Skiadopoulos 2006; Sepp 2008; Broadie, Jain 2008).

In the following article we use diffusion models to forecast the logarithmic
levels of DAX, CAC40, NASDAQ and WIG20 indexes. The parameter
estimates were obtained by modern Phillips and Yu (2009) method and more
classical, introduced by Hansen (1982), Generalized Method of Moments
(GMM) with covariance matrix, estimated by using Bartlett kernels, as a weight
matrix (Newey, West, 1987). We determine the forecasts by using Monte-Carlo
methods and compare its quality with the forecasts which we obtained by using
popular parametrical time series models.

2. Models

We use popular diffusion models to describe logarithmic prices of financial
instruments. The diffusion models were originally used to describe the
evolution of short-term rates. Their significant feature is the mean reverting

property.
The most simple diffusion model — Vasicek (1977) model — assume that the
price process is modeled by the following stochastic differential equation

dX,=x(u—X,)dt+odB,,
with initial condition X, = x,. Parameters x, 4 and o are strictly positive.
Parameter x4 can be interpreted as a long term mean level, k¥ as a speed of

reversion, and o as a instantaneous volatility.

Cox, Ingersoll and Ross (1985) introduced model called CIR, which is an

extension of Vasi¢ek model. The X, evolution is described by the formula

dX, =x(u—-X,)dt+o+/X,dB,,

1

with initial condition X, =x,. Parameters x, x4 and o are strictly positive,

and have the same interpretation as in Vasi¢ek model. The square root in the
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diffusion function allows to avoid the possibility of nonpositive values of X,
provided that the condition 2xu > o is met.

Chan at al. (1992) introduced model called CKLS. Authors assume that X,
evolution is described by the following diffusion models

dX, =x(u—X,)dt+oX"dB,,

with initial condition X, = x,. Similarly as in Vasi¢ek and CIR model, x, u
and o are strictly positive. An additional £ parameter is called the elasticity of
variance parameter, and [ €[0,1]. By simply placing the appropriate
restrictions on the four parameters x, g, o and £ we can obtain 7 other

diffusion models — among others the Vasi¢ek and the CIR model.
(see Chan at al., 1992).

3. Determination of One-Day Ex-Post Forecast
from Diffusion Models
Denote the /-step forecast of X, , as X (). Assuming that the minimum

squared error is the loss function, the forecast )A(t (!) is the random variable
chosen such that

ELX,,, —X,() <minE[X, —g(X,... X,)T,
g
where g(X,,...,X|) is measurable function towards c-algebra generated by the
information available up to time ¢ inclusive. We can show that
Xt(h) = [E(XHh | 7:1) )

Therefore, if we assume that process is described by diffusion models and
length of one step equals %, then

t+ho t+ho
X, = E| Xg + J' w(X,,5,0,)ds + I o(X,,5,0,)dB(s)F,
0 0

t+ho t+ho
= F X, + j w(X,,s,6))ds + j o(X,,s,0,)dB(s)
t t
t+ho t+ho

=X, + j (X, s,6))ds +E J.J(Xs,s,éz)dB(s),
t t
where él and éz are parameter estimates vectors of drift and diffusion
respectively, obtained on the quotations up to time s. As we know,
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the quotations are available only in discrete intervals. Consequently, we
approximate the forecast X . (/) by the Euler scheme of the form

h-1 h-1
XMy =X+ w(X0).,0)8,+> o(X0),. .05, (1)
k=0 k=0

Moreover, for all ¢ holds X = X|,/5)- Cziraky i Kucherenko (2008) obtain

estimates of X “)(I) by repeating the above recursion using N independent
@) ©

realizations of innovations vectors (&,1,---»Epss

), and for any realization they
determine the trajectory (1) with initial condition X ;5)- The MC estimator of
X . (D) is then given by the average of the last elements of every trajectory.

One-step ex-post forecasts are obtained by fitting the model using data up to
time 7, and then computing the usual fitted equation and residuals for periods
T +1to T+ F,with additional assumption that the quotation which precede the

forecast is known.

4. The Data

We take into account daily levels of German DAX, French CACA40,
American NASDAQ and Polish WIG20 indexes from the period 2. January
2001 to 29. December 2006. In both series we observe the logarithmic trend.
During the mentioned period the trend is growing. Therefore, we decide to
model logarithmic levels of the indexes. The significance of the trend is then
marginalized. The descriptive statistics are given in the following Table 1.

Table 1. Descriptive statistics of the logarithmic levels of indexes CAC40, DAX,
NASDAQ and WIG20 from the period 2. January 2001 to 29. December 2006

Time series obs. mean std.dev.  skewness  kurtosis min. max.
number
CAC40 1534 8.3138 0.19922 -0.1759 2.0605 7.7845 8.6993
DAX 1528 8.40231 0.24511 -0.3745 2.3597 7.6976 8.824
NASDAQ 1554 7.55651 0.1818 -0.8033 3.0256 7.0158 7.9583
WIG20 1546 7.4555 0.34958 04318 2.0328 6.8979 8.1745

5. Empirical Research

In the following section we present results of one day ex-post forecasts
quality testing of examined time series, which we obtain from diffusion model.
The model is estimated by using the modern two-stage Phillips and Yu (2009)
method and the Generalized Method of Moments. We obtain the parameter
estimation of diffusion models by using our own procedures in Matlab (Phillips-
Yu method) and by using the Matlab libraries by Cliff (2003) (GMM).
The values of parameters estimations are given in Table 2.
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Table 2. Parameter estimations of diffusion models obtained by using the Phillips and
Yu method and the Generalized Method of Moments for logarithmic levels of
CAC40, DAX, NASDAQ and WIG20 indexes

Estimation method: Phillips and Yu
model parameter CAC40 DAX NASDAQ WIG20
Vasicek K -0.10636 0.29613 0.0000258 0.0012536
H 8.1772 8.4126 7.5829 7.4681
o 0.16926 0.21296 0.12692 0.16780
CIR K -0.10702 0.29529 0.081467 0.00776
H 8.1667 8.4223 7.5632 7.3712
o 0.058477 0.072836 0.045667 0.052088
CKLS K 0.41333 0.51308 0.081748 -0.85398
H 8.3644 8.4174 7.5632 6.557
o 5.5273 5.3016 0.72314 0.4757
B -4.8234 -4.2147 -0.85398 -0.51843
Estimation method: GMM
model parameter CAC40 DAX NASDAQ WIG20
Vasicek K 0.034582 0.042929 0.91407 -0.12749
H 8.3644 8.4174 7.5811 6.5984
o 0.11064 0.12291 0.26122 0.23064
CIR K 0.03683 0.044431 0.91274 -0.13399
H 8.3589 8.4169 7.5827 6.6412
o 0.03826 0.042108 0.094545 0.084197
CKLS K 0.033606 0.041253 0.97411 -0.11478
H 8.3669 8.4177 7.5632 6.5059
o 0.17815 0.43424 4.5291 1.7382
B -0.22647 -0.59029 -3.7814 -1.007

Starting values: k =0, p equales the mean of the sample, o determines the starting value for o by using
Yoshida (1992) estimator for Vasi¢ek and CIR model. As the starting value for & in CKLS model we take
earlier obtained estimation from CIR model. As the f, we take 0.5.

For examined time series we determine 100 ex-post forecasts, by using 10000
Monte-Carlo simulations, and to assess the quality of the forecasts we use
common error measures. Small values of error measures are indicative of good
quality of the forecasts, and consequently of good model fitting. The good
quality also implies using diffusion models as the alternative for parametric
models of time series.

Forecast errors were compared with errors obtained from popular time
series models forecasts. The grade of time series models had been selected by
using the Schwarz Information Criterion. The occurrence of unit root was
verified by using Dickey-Fuller (Said, Dickey, 1984) and Phillips-Perron (1988)
tests. In the case of failure to reject the Hy hypothesis we modeled the
conditional mean by ARIMA(p,l,g) model. Independently we used two
innovation distributions — the Student and the Generalized Error Distribution
developed by Nelson (1991). Moreover, we verified the existence of the ARCH
effect by using Engle (1982) and McLeod-Li (1983) tests. The latter consists in
applying Ljung-Box (1978) test to squared residuals of linear model.
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As we can observe in Tables 3-6, the forecast errors for WIG20 index are
bigger than for other indexes. Polish financial market is still a raising market,
and WIG20 volatility is bigger than volatility of indexes traded in mature
markets.

The type of applied model do not have big influence on the forecast quality.
For indexes CAC40, DAX and WIG20 the forecast was a little bit better when
we modeled the logarithmic prices by using diffusion models, but for NASDAQ
index the forecast errors were smaller for parametric time series models. From
among diffusion models, the best forecasts we obtained using CIR models.
Moreover, we can notice that for all examined time series, Phillips and Yu
method of parameters estimation leads to smaller forecast errors than GMM
method.

Table 3. Values of the forecast errors obtained by using diffusion models. Logarithmic

levels of CAC40 index
Error Phillips and Yu method Generalized Method of Moments
Vasicek CIR CKLS Vasicek CIR CKLS

MSE 6.9069e-5 6.8895e-5 6.902e-5 6.8355e-5 6.817e-5 6.9836e-5
MedE 2.5575e-5 2.6669e-5 2.6053e-5 26771e-5 2.6696e-5 2.7293e-5
ME 0.00077931  0.00077539  0.00078897  0.00032694  0.00032105  0.0012119
MAE 0.0062754 0.0062588 0.0062567 0.006239%4 0.0062339 0.0062989
RMSE 0.0083108 0.0083003 0.0083078 0.0082677 0.0082565 0.0083568
MAPE  0.00072612  0.0007242 7.2396e-6 0.00072199  0.00072135  0.00072881
AMAPE  0.00036308  0.00036212 3.62e-6 0.000361 0.00036067  0.00036444
LL 9.2627e-7 9.2395e-7 9.2561e-7 9.1675e-7 9.1422e-7 9.3652e-7
time series parametric models

ARIMA(0,1,2) ARIMA(0,1,2) ARIMA(0,1,2)- ARIMA(1,1,1)-
(Student) (GED) GARCH(1,1) GARCH(1,1)
Error (Student) (GED)
MSE 7.0223e-5 - 7.0214e-5 7.0232e-5
MedE 2.6884e-5 - 2.6873e-5 2.6895e-5
ME 0.00092873 - 0.00092695 0.00093054
MAE 0.0063371 - 0.0063367 0.006338
RMSE 0.0083799 - 0.0083794 0.0083805
MAPE 0.00073332 - 0.00073327 0.00073342
AMAPE 0.00036668 - 0.00036665 0.00036673

LL 9.4187e-7 - 9.4175e-7 9.42e-7




Table 4. Values of the forecast errors obtained by using diffusion models. Logarithmic
levels of DAX index

Error Phillips and Yu method Generalized Method of Moments
VaSicek CIR CKLS VaSicek CIR CKLS
MSE 7.7296e-5 7.7358e-5 7.7691e-5 7.8574e-5 7.8449e-5 8.0539%-5
MedE 2.6917e-5 2.7475e-5 2.742e-5 2.706e-5 2.9142e-5 3.0036e-5
ME 0.0014902 0.0014927 0.0014958 0.0017948 0.0017836 0.0023101
MAE 0.0066737 0.0066797 0.0066842 0.0067379 0.0067449 0.0068758
RMSE 0.0087918 0.0087953 0.0088142 0.0088642 0.0088571 0.0089744
MAPE  0.00075446  0.00075514  7.5564e-6  0.00076169  0.00076248  0.00077721
AMAPE  0.00037726  0.0003776 3.7785e-6  0.00038089  0.00038128  0.00038867
LL 9.8999%e-7 9.9078e-7 9.9505e-7 1.0063e-6 1.0047¢-6 1.0312e-6
time series parametric models

ARIMA(0,1,2) ARIMA(0,1,.2) ARIMA(0,1,2)- ARIMA(1,1,1)-
(Student) (GED) GARCH(1,1) GARCH(1,1)
Error (Student) (GED)
MSE 7.8051e-5 7.8615e-5 7.8058e-5 7.8058e-5
MedE 2.7454e-5 2.7438e-5 2.7546e-5 2.7546e-5
ME 0.0015387 0.0016234 0.0015409 0.0015409
MAE 0.0067188 0.0067622 0.0067197 0.0067197
RMSE 0.0088346 0.0088665 0.0088351 0.0088351
MAPE 0.00075963 0.00076455 0.00075973 0.00075973
AMAPE 0.00037985 0.0003823 0.0003799 0.0003799
LL 9.9984e-7 1.007e-6 9.9994e-7 9.9994e-7
Table 5. Values of the forecast errors obtained by using diffusion models. Logarithmic
levels of NASDAQ index
Error Phillips and Yu method Generalized Method of Moments
Vasicek CIR CKLS Vasitek CRR CKLS

MSE 7.3033e-5 7.3078e-5 7.3089%-5 7.507%-5 7.4249e-5 7.5569¢e-5
MedE 1.8082e-5 1.7335e-5 1.8443e-5 2.1237e-5 1.9876e-5 2.1606e-5
ME 0.055699  0.00064038  0.055435 0.0013926  0.0013442 0.0015984
MAE 0.0062114  0.0062146 0.0062015  0.0064573  0.0064043  0.0065172

RMSE 0.0085459  0.0085486 0.0085492  0.0086648  0.0086168 0.008693
MAPE  0.00079535 0.00079575  7.9409e-6  0.00082676  0.00081998  0.00083443
AMAPE  0.00039763  0.00039783  3.9699%e-6  0.00041338  0.00040998  0.00041722

LL 1.1983e-6 1.199¢-6 1.1992¢-6 1.2319%-6 1.2183e-6 1.24e-6
time series parametric models
ARIMA(0,1,2) ARIMA(0,1,2) ARIMA(0,1,2)- ARIMA(1,1,1)-
(Student) (GED) GARCH(1,1) GARCH(1,1)
Error (Student) (GED)
MSE 7.2567e-5 7.2567e-5 7.282e-5 7.282e-5
MedE 1.7764e-5 1.7769e-5 1.8811e-5 1.8819e-5
ME 0.056472 0.056466 0.055536 0.055532
MAE 0.0062011 0.006201 0.0062328 0.0062328
RMSE 0.0085187 0.0085186 0.0085335 0.0085334
MAPE 0.00079404 0.00079404 0.00079811 0.00079811
AMAPE 0.00039697 0.00039697 0.00039901 0.00039901

LL 1.1907e-6 1.1907e-6 1.1949e-6 1.1948e-6
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Table 6. Values of the forecast errors obtained by using diffusion models. Logarithmic

levels of WIG20 index
Error Phillips and Yu method Generalized Method of Moments
VaSicek CIR CKLS Vasicek CIR CKLS
MSE 0.00018948  0.0001892  0.00018936  0.00018897  0.00018938  0.00018973
MedE 6.1233e-5 6.3602e-5 6.5722e-5 6.4217e-5 6.4506e-5 6.7774e-5
ME 0.00063017  0.00063866 0.058766 0.0001788  0.00032633  -0.0001169
MAE 0.010608 0.010619 0.010609 0.010582 0.010595 0.010586
RMSE 0.013765 0.013755 0.013761 0.013747 0.013762 0.013774
MAPE 0.0013032 0.0013046 1.3034e-5 0.0013001 0.0013016 0.0013007
AMAPE  0.00065164  0.00065232  6.5172e-6  0.00065007  0.00065083 = 0.00065032
LL 2.8646e-6 2.8603e-6 2.8627e-6 2.8568e-6 2.8629%-6 2.8682e-6
time series parametric models
ARMA(0,2) ARMA(1,1)
Error (GED) (Student)
MSE 0.01904131 0.019061629
MedE 6.6946E-05 6.87936e-5
ME 0.00035112 0.000398688
MAE 1.06889157 1.071935667
RMSE 0.13799026 0.138063858
MAPE 0.131329 0.1317012
AMAPE 0.00065666 0.000658529
LL 2.8789e-06 2.88198e-6

Note: MSE — the mean squared error, MedE — the mean median error, ME — the mean error, MAE — the mean
average error, RMSE — the root of the mean squared error, MAPE — the mean average percentage error,
AMAPE — corrected average percentage error, and LL — logarithmic loss function (cf. Welfe 1998; Doman,
Doman, 2004).

6. Conclusions

The high quality of the forecast obtained from the diffusion models is indicative
of good fitting of the diffusion models to the studied time series. The values of
the forecast errors are often smaller when diffusion models were used.
It is notable that in diffusion models the volatility depends only on white noise
and optionally on current value of the process. In ARIMA-GARCH models the
volatility is described by the second parametric equation.

The most surprising fact is that the CKLS model leads to worse quality of
the forecast than the VaS$i¢ek and CIR model. After all, both models are
special cases of the CKLS model. The reason for that situation lies in very bad
fitting of the CKLS model to the examined time series. The estimates of £ are
negative, while the model assumed that £ €[0,1].

It is notable that determining the forecasts by using diffusion models is not
laborious. The MATLAB procedures used in the conducted research need only
a fraction of a second to estimate parameters by using two-stage Phillips-Yu
method and a few seconds if we decide to use the GMM method. The most
laborious part of the calculation is determining 10000 sample paths, but it takes
up to two minutes to do this operation.
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Prognozowanie proceséw finansowych za pomocg modeli dyfuzji

Zarys tres$ci Prognozowanie szeregdw czasowych jest jednym z najwazniejszych
zagadnien wspoétczesnej ekonometrii finansowej. W obliczu rosnacego zainteresowania modelami
z czasem ciaglym i szybkiego rozwoju metod ich estymacji, podejmujemy w pracy probe
modelowania i prognozowania szeregdw czasowych z réznych rynkéow finansowych za pomoca
modeli dyfuzji. Stosujemy w tym celu bazujaca na symulacjach Monte-Carlo metodg
wprowadzong przez Cziraky i Kucherenko (2008). Jako§¢ otrzymanych prognoz zostaje
skonfrontowana z jakoscia prognoz otrzymanych za pomoca powszechnie stosowanych
parametrycznych modeli szeregdw czasowych.

Stowa kluczowe: model ARIMA, model GARCH, modele dyfuzji, pierwiastek
jednostkowy, prognozy ex-post, symulacja Monte-Carlo.



