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Decomposition of Risk and Quantile Risk Measures 
 

1. Introduction 
 Portfolio managers led to the development of two things: first, correlation 
models, and second, analytical techniques that can handle asymmetrical risk. 
With correlation modeling, the subject has by and large converged on the condi-
tional independence framework, allowing concrete statements to be made about 
default rate volatilities and the potential losses; this is now used both in risk 
management and in pricing. As regards portfolio analytics, the necessity for risk 
measures other than the normal mean-variance has been understood, and it is 
well established that expected shortfall (ES) is a good tool, as it is sensitive to 
tail risk, it is a coherent risk measure (Artzner et al, 1999, and Acerbi and 
Tasche, 2002), and it provides a close link to the notion of tranche payouts and 
hence to the CDO and securitisation world. We discuss the application of ES as 
quantitative measure of how much risk in the portfolio (model) comes from sys-
tematic risk and how much is residual. If we can assume that the risk is driven 
by a univariate risk factor A say, and that the A-conditional expected loss of the 
portfolio, E[Y ⎢A], is a monotonic function of this factor, and also that the port-
folio is ‘infinitely fine-grained’, then the portfolio loss is a one-to-one transfor-
mation of the risk factor: Y = E[Y ⎢A]. The Basel II framework chooses a simple 
prescription, thereby allowing the quantiles of E[Y ⎢A] to be easily computable. 
Now if we wish to incorporate the effects of unsystematic risk (finite portfolio; 
large or largish exposures) we can model the loss as Y = X + U, with X = E[Y 
⎢A] and U denoting an independent Gaussian residual of variance σ2. The dif-
ference between the upper P-quantiles of X and Y is given by the formula (Mar-
tin and Wilde, 2002), and references therein): 
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where f is the density of X. Incidentally the shortfall1 is: 
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Notice that for the purposes of the GA formulas above we do not need A to be 
univariate; however, if it is not, then it is generally a lot more difficult to calcu-
late the VAR of E[Y ⎢A]. From now on, we will not make any assumptions 
about the distribution of A, or about the conditional distribution of Y on A; we 
thereby keep everything general. 
 Continuing from the above ideas, we start by writing:  
 

 Y =μY⎢A + (Y - μY⎢A), 
 

with μY⎢A = E[Y ⎢A] denoting the conditional mean of Y given A (so it is a ran-
dom variable). It is then natural to consider the following expression: 
 

 E[Y ⎢Y>⎢y] = E[μY⎢A ⎢ Y > y] + remainder, 
 

thereby splitting the ES into two parts.  
 In general, we will not know the distribution of μY⎢A in ‘closed form’. In 
practice this is not an issue because when calculations are done one is in effect 
coming up with a large number of scenarios for A and computing the condi-
tional mean E[Y ⎢A] in each; the distribution of μY⎢A is then approximated by the 
empirical distribution of the generated sample.  
 We identify the first term as the contribution of systematic risk to the 
portfolio ES (or the ‘systematic part’ for short). Incidentally, this arises as a 
natural consequence of the Fourier integral representation of shortfall, used in 
the saddle point approximation.  
 We explore the relationship between this and the well-known analysis of 
variance formula: 
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in which the terms on the right-hand side tell us how much risk comes from the 
variation of the risk factor(s) )(D AY

2 μ and how much comes from residual risk 

E[ 2
AYσ ]). Hence we identify the ‘remainder’ term in the above equation as the 

contribution to unsystematic risk. For a multivariate normal portfolio model, 
and for elliptical distributions (such as Student-t) the decompositions are essen-
tially identical.  
                                                      

1 The ES: S+ or S- is defined by E[Y | Y > y] or E[Y | Y < y] where Y is the portfolio 
loss (or value) and y is the VaR at the chosen tail probability. In the case of Y not hav-
ing a continuous distribution. 
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2. Systematic decomposition of ES 
 We start with our basic definition 
 

 E[μY⎢A ⎢ Y > y]. (3) 
 

This can also be written as the mean plus the covariance of the conditional ex-
pected loss and tail probability:  
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with μY = E[Y]. (This is apparent when one expands the covariance as the 
expectation of the product minus the product of the expectations; the second 
term cancels the μY.) There is a link with mean-variance theory: the ‘mean plus 
some number (η) of standard deviations’ risk measure is: 
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so the second term is the covariance of μY⎢A with itself (multiply by  η/σY). 
Hence the expressions for systematic risk contribution have in common that 
they are the mean plus the covariance of the conditional expected loss with 
something reasonably natural (the conditional tail probability in (4), the condi-
tional expected loss in (5)). As we shall see later, in the case when the joint dis-
tribution of asset returns in the portfolio is multivariate normal, the decomposi-
tions are in fact identical.  

3. Multivariate normal model and elliptic model 
 We drew a comparison between the mean-variance and ES frameworks ear-
lier (equations (4) and (5)). Pursuing this line a bit further, one might ask 
whether the ES and mean-variance decompositions the same result in any par-
ticular case. We start with the multivariate normal portfolio and risk factor, on 
which the ES and mean-variance measures are equivalent. Let the risk factor be  
A ~ N(0, ∑) and write: 
 

 Y =μ + k′ A+ U, 
 

where k is the vector of the factor weights and U ~ N(0, σ2 
U) is independent of 

A and represents the unsystematic risk. Then: 
 

 μY⎢A = μ + k′ A, 
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and so the systematic contribution to ES is: 
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(as the integration over A can be done in closed form) while unsystematic con-
tribution is: 
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 To compare this with the mean-variance framework, let the mean – variance 
risk measure be mean plus ηstandard deviations, that is, μY + ησY. Then the sys-
tematic and unsystematic parts are respectively: 
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Setting η = φ(Φ-1(PP

+))/P+
P , a definition that depends only on the choice of tail 

probability rather than on the portfolio in question, makes the ES and mean-
variance decompositions agree. The systematic part is proportional to the square 
of the correlations (that is, ‘k squared’) and the unsystematic part is inversely 
proportional to the portfolio size (not inversely proportional to its square root).  
As η is independent of the portfolio mean and variance, the result extends 
automatically to elliptical distributions of finite variance, as the elliptical model 
is obtained from the normal model by making the variance random and then in-
tegrating it out (for example, for Student-t it is reciprocal-gamma distributed). 

4. Empirical analysis 
 We take as a test an example of set of assets belong to portfolio WIG-Media 
from Warsaw Stock Exchange in period which cover this new index that means 
from 15.02.2005 up to day 28.05.2007. On this period rate of return of market 
benchmark, WIG was on level 0.00155 with variance equals 0.00013. On media 
sector, index WIG-Media rate of return had mean -0.00064 and variance 
0.00166. We started from classical risk decomposition based on Sharp model 
(table 1). Ratio in this table means ratio of market risk to global risk.  
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Table 1. Results of risk decomposition based on Sharp model 
 

 AGORA INTERIA MNI MUZA PWK TVN WSIP 
mean -0.00027 0.00376 0.00188 0.00250 0.00201 0.00056 0.00097 

σ 0.02239 0.03071 0.04084 0.05021 0.05773 0.03953 0.01730 
β 0.22159 0.06113 0.04949 0.05895 0.03187 0.06177 0.15072 

systematic 
risk 0.00257 0.00137 0.00152 0.00241 0.00160 0.00357 0.00596 

unsystematic  
risk 0.02141 0.03060 0.04074 0.05004 0.05768 0.03939 0.01699 

ratio 0.02239 0.03071 0.04084 0.05021 0.05773 0.03953 0.01730 
 

Source: Own calculation. 

Next we took to our analysis quantile risk measures as was described early. This 
example, by contrast, shows that decomposition done by ES and mean-variance 
do not always agree. We not assume normal distribution and statistical tests 
give rejections of hypotheses of normality (figure 1 gave the graphical represen-
tations of tests). We have on modal distributions but not normal. Results of risk 
decomposition based on ES model we notice in table 2 and 3, were we collabo-
rated with two different confidence level 0.05 and 0.01.  
 
Table 2. Results of risk decomposition based on ES model (confidence level 0.05) 
 

 AGORA INTERIA MNI MUZA PWK TVN WSIP 
VaR0,05 -0.0352 -0.0371 -0.0353 -0.0639 -0.0547 -0.0319 -0.0246 

CVaR0,05 -0.0511 -0.0548 -0.0751 -0.0880 -0.0970 -0.0713 -0.0364 
β 2.0598 2.1586 10.3178 3.0259 10.177 11.4423 1.2646 

systematic  
risk 0.0168 0.0176 0.0839 0.0246 0.0828 0.0930 0.0103 

unsystematic  
risk 0.0061 0.0060 0.0819 0.0091 0.0832 0.1022 0.0025 

ratio 0.7319 0.7462 0.5060 0.7306 0.4985 0.4765 0.8031 
 

Source: Own calculation. 

Table 3. Results of risk decomposition based on ES model (confidence level 0.01) 
 

 AGORA INTERIA MNI MUZA PWK TVN WSIP 
VaR0,01 -0.0670 -0.0713 -0.0600 -0.0915 -0.0925 -0.0512 -0.0422 
CvaR0,01 -0.0821 -0.0856 -0.1865 -0.1264 -0.2069 -0.1923 -0.0533 

β 1.5441 1.0348 24.0445 3.7723 22.8118 28.0666 1.0904 
systematic  

risk 0.0123 0.0083 0.1919 0.0301 0.1821 0.2240 0.0087 
unsystematic  

risk 0.0055 0.0073 0.0960 0.0141 0.1212 0.1338 0.0046 
ratio 0.6909 0.5308 0.6666 0.6811 0.6005 0.6261 0.6520 

 

Source: Own calculation. 
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Figure 1. Quantile –quantile normality plot  
Source: Own calculation.  
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We can observe that the level of systematic and unsystematic risk depend not 
only on confidence level but also on asymmetry on probability tail of return dis-
tributions. We can also observe how much changed beta value when we look 
close only on tail of return distributions. 
An interpretation is unnecessary for the development of the theory. In one-
factor risk models, A corresponds to the ‘general state of the economy’ say hole 
market. Complex portfolios require multi-factor models, and it is quite com-
mons to use industrial or different sectors of market to represent the different 
risk factors. A question that naturally arises is whether portfolio risk can be split 
down by issuer and by ‘systematic/unsystematic’ at the same time and how it 
depend on type of return distributions. 
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