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1. Portfolio Problem in Finance. Markowitz Solution vs. Noise 
 Modern Portfolio Theory (MPT) refers to an investment strategy that seeks 
to construct an optimal portfolio by considering the relationship between risk 
and return. The success of investment does not purely depend on return, but also 
on the risk, which has to be taken into account. Risk itself is influenced by the 
correlations between different assets, thus the portfolio selection process repre-
sents a complex optimization problem. As  proposed by Markowitz (1952) the 
underlying stochastic process is multivariate  normal with know returns and co-
variances between different assets. In practice however these parameters are de-
termined from market quotations. Since the number  of observations is limited, 
empirically determined parameters will always contain some uncertainty  (i.e. 
noise). 
 In order to determine the optimal portfolio, one has to invert the covariance 
matrix (or equivalently correlation  matrix). Any measurement error (noise) will 
get amplified and the resulting portfolio will be sensitive to noise.  
In this paper we review some standard and more recent filtering techniques, 
based on Random Matrix Theory (RMT), that can reduce the “empirical” noise 
and slightly improve standard Markowitz model’s predictions. 

2. Empirical Correlation Matrices 
 Covariance or equivalently a Correlation Matrix plays an important role in 
the risk measurement and portfolio optimization.  Empirical Correlation Matri-
ces, built from historical data enclose such a high amount of noise, that at first 
look they can be treated as random. This means, that future risk and return of a 
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portfolio are not well estimated and controlled. Only after the proper denoising 
procedure is made, one can construct an efficient portfolio using Markowitz’s 
result.  
 In the RMT approach one computes the correlation matrix and finds the 
spectrum. One then computes the variance of the part not explained by the 
highest eigenvalues and uses the expected PDF of the low part of the spectrum 
to compute λmin , λmax. This information is used to “remove” all the eigenvalues 
that fits well to the “random” part of the spectrum. Deviations from the RMT 
might then suggest the presence of true information. Finally, one obtains a fil-
tered correlation coefficient matrix by transforming back the filtered diagonal 
matrix. In order to obtain a meaningful correlation coefficient matrix one sets to 
one the diagonal elements of the filtered one. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.1. Estimated and effective Risk vs. Return according to the simple Markowitz 
model (black lines) and with RMT cleaning (red lines) (Bouchaud, Potters, 2003) 

 
The difference (c.f.Fig.1) between the estimated (predicted) risk (left part of the 
diagram) and the effective one (right side of the diagram) is slightly smaller 
with help of the simplest RMT filtering procedure, than in the standard Marko-
witz case.  The main goal of all the RMT techniques is to minimize the risk gap 
as far as it is possible. 

2.1. Equal - Time Correlation Matrices 

The simplest way to build empirical correlation matrix is to use N time series of  
quotations of length T, where in practice T is comparable to N. We have then:  
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Using the Markowitz optimization one needs to find a portfolio with maximum 
expected return for a given risk or equivalently minimum risk for a given return 
P. The result in matrix notation:  
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There are many different techniques to reduce the noise, all however follow the 
steps: 

1. Diagonalize the N x N empirical correlation matrix with help of spectral 
decomposition  , where D is a diagonal matrix and U is the 
matrix of eigenvectors. 

DUUE 1−=

2. Remove the noisy eigenvalues D = diag (λ1, … , λc , λc+1, … , λκ). 
3. Keep branch eigenvalues to obtain D(filtered). 
4. Obtain filtered correlation matrix E(filtered)=U-1D(filtered)U. 
5. Restore normalization Eii

(filtered) = 1. 
 

 
Fig.2. Empirical Correlation Matrix (Bouchaud, Potters, 2003) with Marčenko Pastur fit  
 
It is common, that  histogram of eigenvalues (Fig.2.) for any empirical correla-
tion/covariance matrix built from financial data has one eigenvalue much bigger 
than the other ones (we call this eigenvalue the market one, cause the corre-
sponding eigenvector represents all the stocks that are present in the considered 
market), there are also some big eigenvalues which correspond to the market 
sectors, and the huge amount of eigenvalues is concentrated not very far from 
zero. 
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In the RMT approach one believes, that in the lower part of the spectrum there 
exists a nontrivial information (i.e. one or more important eigenvalues) but 
blurred by noise. 
Suppose that, there is only one eigenvalue  behind the noise (C = I) and use the   
Marčenko, Pastur (1967)  result: 
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Filtering technique squeezes the random part of the spectrum to the single ei-
genvalue (see Snarska, Krzych, 2006). 
If one assumes that there exists more than one significant eigenvalue in the 
lower part of the spectrum, the solution is then obtained by the replica trick or 
by summing over planar diagrams (Burda et al., 2003): 
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Fig.3. Empirical Correlation Matrix (Burda et al., 2003) with 6 eigenvalues in the ran-
dom part of the spectrum 

2.2. Filtering Techniques – a Comparison 
 One can very easily check, how well the method works. In order to do so 
one has to simulate the original known and clean covariance or correlation ma-
trix. Adding Gaussian or any other type of noise by generating finite price – 
change time series will produce an “empirical” correlation (covariance) matrix. 
The next step is to reconstruct the best estimate of the clean covariance matrix 
using the investigated cleaning technique and finally one compares the risk of 
the cleaned, empirical portfolio to the risk of the clean portfolio using the 
Markowitz optimization procedure. 
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2.3. EWMA Correlation Matrix 
 Now we are ready to introduce dynamics to the model. The most trivial ap-
proach is to change the definition of the empirical covariance matrix. Going 
back to the case with single eigenvalue hidden in the lower part of the spectrum, 
the empirical matrix is now computed using an exponentially weighted moving 
average with: 
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where ./1 Nr−=λ   
   
As the result we get (Bouchaud, Potters, 2005, Pafka et al., 2004): 
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where G(λ) solves ).1log( rGrrG −−=λ  
     

 
Fig.4. Spectrum of exponentially weighted random matrix compared to the spectrum of 

a standard Wishart matrix (Pafka et al., 2004) 

2.4. Non-Equal Time Correlation Matrices and Cross Correlations 

 This simple model can be then further complicated by taking into the con-
sideration the existence of nontrivial cross correlations in time, which are not 
observed in the standard Markowitz model. 
 One stock’s price behavior does not only affect the other stock’s price be-
havior in the same trading day. One stock can also mimic the behavior of the 
another one within next few trading days. The effect is easily seen, when taking 
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under consideration more dense data i.e. not only daily quotations, but also e.g. 
15 – minutes data. 
 

 
Fig.5. Eigenvalue density for different time scales of quotations 

 
That is why now we build the empirical correlation matrix with: 
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with E still N x N but not symmetric. 
The final result (Bouchaud et. al., 2007) is similar to the Marčenko – Pastur 
case: 
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where 
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Fig.6. Wishart – type distributions for a non – equal time correlation matrix (Bouchaud 

et. al., 2007) 

3. Conclusions 
 The aim of this paper was to present and review some old and more recent 
methods of the Random Matrix Theory approach to the Portfolio Problem in Fi-
nance.  
 There are still however problems that need to be considered, like the behav-
ior of the highest eigenvalue when the data are more dense or fat tails, usually 
present in the financial time series. 
 Furthermore there is a strong need in making the methods more efficient not 
only in the artificial environment and it is then crucial to evaluate the methods 
that can not only eliminate the noise from the eigenvalue spectrum, but can also 
clean the corresponding eigenvectors. 
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