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1. Introduction

In order to illustrate a formal Bayesian comparison of various bivariate
ARCH-type models through their Bayes factors, Osiewalski and Pipien (2003)
used two foreign exchange rates that were most important for the Polish
economy till the end of 2001, namely the zloty (PLN) values of the US dollar
and German mark. The data consisted of the official daily exchange rates of the
National Bank of Poland (NBP fixing rates). By restricting to only bivariate
VAR(1) models with GARCH(1,1) or ARCH(1) disturbances, it was possible to
estimate unparsimoniously parameterised specifications, such as general
multivariate ARCH-type models, presented by Engle and Kroner (1995) and
Gourieroux (1997, ch.6). These models have much more parameters than
univariate ARCH and GARCH models, proposed originally by Engle (1982)
and Bollerslev (1986), and analysed using the Bayesian approach by Geweke
(1989), Kleibergen and Van Dijk (1993), Bauwens and Lubrano (1998),
Bauwens, Lubrano and Richard (1999), Osiewalski and Pipien (1999, 2000),
Vrontos, Dellaportas, and Politis (2000) and Bos, Mahieu and Van Dijk (2000).
The number of free parameters of multivariate ARCH-type models can increase
very fast as the dimensidn of the vector time series grows. In the general
version of thek-variate VechGARCHY,q) (or VECH(p,q)) model, this number
is a fourth order polynomial & making even VECH(1,1) impractical fkr> 2.
Thus, within ARCH-type models, interest focuses on restricted ARCH and
GARCH specifications or on factor ARCH models; see e.g. Diebold and
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Nerlove (1989), King, Sentana and Wadhwani (1994) and Gourieroux (1997,
ch. 8). Apart from the dimension of the parameter space, Osiewalski and Pipien

(2003) considered other aspects of empirical ARCH-type specifications: free
conditional covariances versus constant conditional covariances or correlations,
direct ARCH versus latent factor ARCH models, conditional Normality versus
Studentt tails, and the ARCH(1) structure versus GARCH(1,1).

In our previous study only pure time-series models for daily data were used,
without introducing any variables that would be motivated by theoretical
considerations. The relationship: (PLN/USD)/(PLN/DEMIPEM/USD, which
linked two Polish official exchange rates to the international FOREX market,
was ignored. In this paper we assume that this approximate relation (in log
terms) is a cointegration equation in the sense of Engle and Granger (1987) and
that the DEM/USD rate is weakly exogenous in the Bayesian sense of Florens
and Mouchart (1985) and Osiewalski and Steel (1996). We build a two-equation
conditional model with the error correction mechanism (ECM) and the
disturbances following one of the competing bivariate GARCH specifications.
The aim of the paper is to check sensitivity of our Bayesian model comparison
with respect to the presence of the third (exogenous) exchange rate.

In view of high dimensionality of the parameter spaces and non-standard
forms of the posterior densities as well as their full conditionals, we use the
Metropolis-Hastings (M-H) algorithm to simulate and explore the posterior
distributions. The values of the marginal data densities for each model, which
are the main quantities for Bayesian model comparison, are approximated by
means of the Newton and Raftery’s (1994) estimator, based on the harmonic
mean of the likelihood values calculated at M-H draws from the posterior. Both
the bivariate framework and a short time series (475 daily observations) enable
us to obtain final results for all models rather quickly.

The structure of the paper is as follows. The next section shows the data and
the ECM-type model framework for daily growth rates of two exchange rates.
Section 3 presents all the models used for the bivariate error term of the basic
specification and ranks the models using Bayes factors. Section 4 concludes.

2. The Data and Model Framework

In order to compare competing bivariate ARCH-type specifications we use
the growth rates of PLN/USD and PLN/DEM. Osiewalski and Pipien (1999,
2000) modelled these two series using univariate AR(1HYGARCH(1,1)
models. Our original data set consists of 478 daily observations on three
exchange rates: PLN/USDuf) PLN/DEM (x) and DEM/USD ¥), covering
the period from February 1, 1996 till December 31, 1997. The first three
observations from 1996 (February 1,2,5) are used to construct initial conditions.
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ThusT, the length of the modelled vector time series of daily growth rates of
andxy is equal to 475.

We denote our modelled bivariate observationg=a¥u,y2) , whereyy, is
the daily growth (or return) rate of US dollar apgdis the daily growth (or
return) rate of German mark, both expressed in percentage points and obtained
from the daily exchange rateg, i=1,2, by the formulay;=100In/xt.1). We
also defineECM, = Inxy-Inx-Inw; and z=100Infw/w,1), and model our data
using the conditional ECM-type VAR(1) framework:

Y =8 =R(y1-0)+az +AECM s +¢

with the error term described by competing bivariate ARCH specifications.
More specifically,

Ay 22%52:%%1@*%*%ﬁ%m-lﬁii%’tﬂ(’;)-"

The elements 0b, R, a andA are common parameters, which we treat as a
priori independent of model-specific parameters and assume for them the
multivariate standardised Normal prisg¢0, |1¢), truncated by the restriction that

all eigenvalues oR lie inside the unit circle.

In the next section we present and compare 10 different ARCH-type
specifications for the disturbances of the bivariate VAR(1) model in (1).Within
the Bayesian posterior odds approach, the explanatory power iefhtimodel
is summarised by the marginal density of The2 observation matriy=(ys...yr)
(given the initial conditiong), evaluated at the actual data. This density value
is calculated by integrating (averaging) the likelihood function with respect to
the proper prior measure of the parameter ve$QiO;:

P(Y M, Y0)) = [ P(YM;.64), Y0)) P(Eiy) by - (2
o]

Competing models are compared pair-wise through the Bayes factor
Bi=p(YIMi,yo)! P(YIM;,Y@), Which, together with the prior odds ratio
P(M;)/ P(M;), determines the posterior odds\fagainstv;:

P(M; 1Y, Y0)) _ P(M;)
P(M;j1Y.Yq) P(Mj)

B;

where P(My) and P(M:, | v, Y) are, respectively, the prior and posterior
probability ofMy; see, e.g. O’Hagan (1994). Direct evaluation of the integral in
(2) (through either numerical quadratures or Monte Carlo sampling from the
prior density) is not efficient or even not feasible when the dimension of the
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parameter space is as high as in the models considered in this paper. Thus we
have to resort to other numerical tools, based on good exploration of the
parameter space through sampling from the posterior. Here we use Metropolis-
Hastings Markov chains; see, e.g. O’'Hagan (1994), Gamerman (1997).

Using simple identities, we can write the marginal data density in the form

-1
P(YIMi. (o)) = gg[p(ﬂ Mi19(i)1y(0))]_1dp(9(i) IMi.y, y(oﬂg . (3)

where P(6;|Mi,y,y0) denotes the posterior cumulative distribution function.
Formula (3) is the basis of the method by Newton and Raftery (1994), which
approximates the marginal data density by the harmonic mean of the values
P(yIMi, 84.Y©), calculated for the observed and for §; drawn from the
posterior distribution. The N-R harmonic mean estimator is consistent, but
without finite asymptotic variance. Despite this serious theoretical weakness,
the N-R estimator (very easy to compute) was quite stable for all our models.

3. Competing specifications

In this section we present and compare 10 different ARCH-type
specifications for the disturbances of the bivariate VAR(1) model (1). We try to
follow the general-to-specific strategy and start with two non-nested,
conditionallyt distributed multivariate GARCH(1,1)-type processes: the Vech-
GARCH specification and Bollerslev's (1990) Constant Correlation model. We
then consider five simplifications ¢fVECH(1,1), including a simple BEKK
formulation, which explains our data best. Hence we also examine special cases
of our favouritet-BEKK(1,1) specification in search of a good and even more
parsimonious model.

3.1. Basic non-nested specifications

First we consider thdé-VECH(1,1) model ), where the conditional
distribution ofég (given its past, denoted hy.,) is Student with zero location
vector, inverse precision matiik and unknown degrees of freedorm 2, i.e.

Oyye o O
O

& |1~ 1Oz, Hi V), He = 2t Moo

where the vectorisation of the lower parthfis parameterised as
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(4)

with Ho = hg I, andh, treated as an additional free parameter. Remind that the
conditional covariance matrix & given ¢, is (-1)"v H,. In the k-variate
version of this model the number of free parameters of the error pmiess
fourth order polynomial ofk, namely 2+[1k(k+1)]k(k+1)/2; this gives 23
parameters whek=2. We assume prior independence ¥qrh, and the three
groups of parameters in (4). The degrees of freedom parameter follows the
Exponential distribution with mean 1&xp(10), truncated by the condition

v> 2. The initial valueh, has the Exponential prior with meanBxp(1). For

ap's we assume the product of the densities of the following distributions:
Exp(1) for a;p and agy, and N(O, 1) for ay, truncated by the restriction that
a10@30-3,>>0. The prior densities of the other parameters are the products of
the densities of the following Normal distributions:

11~ N(0.5)), ag3~ N(0.51), b; ~N(0.51), by3~ N(0.52),
a; ~ N(0,1) andb; ~ N(0.1) for all other pairsi(j);

these densities are truncated by the restrictions that the matrices

H a1  apl2  ay azz/ZE H b, bp/2 by bzz/ZE
[(P12/2 &3  apl2 a3 O =Eb12/2 b byp/2 by O
. A1 apl2 ay a32/2D, 1 Dpl2 by b32/2D
@22/2 Q3 apl2  ags ﬁ ﬁbz/z B3 Dy/2 by ﬁ

be nonnegative definite (Gourieroux, 1997) and the eigenvalugsliefinside
the unit circle.

Bollerslev (1990) argues that, for exchange rates, the assumption of constant
conditional correlation may be appropriate. Thus, we also consider the
following model (My):

Ai:

Oyie o O
O

ot Mooi
_ 2 _ 2
Pyt =840+ as€it-1 +PiMai-1, Moot =820+ 8226511 +Doohpot s

Piot = Proy/ugihoot

& |Wia ~ (O, Hi V), Hi =
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wherepy; is the time-invariant conditional correlation coefficientMg, as in
M1, Ho = hy I, wherehy has the Exponential prior with mean 1. For the
remaining parameters we take the following priors:

arp ~ Exp(L) , ago ~ EXpD) , (813, 80,b11,b20) ~U ([0, 1), pro~U([-11]),

whereU(A) denotes the uniform distribution ovAr In its k-variate versioniM,
describes g, using only 2+RB+k(k-1)/2 free parameters; so we have 9

parameters wheke2.

Table 1 summarises model assumptions and presents the decimal logarithms
of the Bayes factors in favour bf;, logio(By) for j=1,2. The decimal logarithm
of the Bayes factor d¥l; againstM,, logio(B12)=29.63, indicates that — under
equal prior probabilities M; is about 30 orders of magnitude more probable
posteriori than M,. This means that the constant conditional correlation
assumption is simply improbabdeposteriori(relative to the VECH model with
no restrictions on its conditional correlations), seems too restrictive, so its
simplifications and special cases will not be considered. However, the VECH
model is unparsimoniously parameterised, and thus completely impractical for
k>2. Hence, we consider some of its special cases in search of even better
models.

Table 1. Two basic models and logs of Bayes factors in favoug.of M

Model Description log,o(B;;)
M, t-VECH(1,1) & |H,v~t(Ov,H,) with vechH, in (4) 0
M, t- Constant ¢, |H,,v ~t(O,v,H,) 29.63

Conditional Correlations. h,=a,+a gizv[ﬂ +hhy L (=1,2)

hl2,[ = p12\ r-E],th22,t

Priors:  a,,a, h, ~Exp(1), v ~Exp(10), a,,a,,.8,; ~N(0.5, 1),
p1o~U(-1, 1), other~N(, 1)

Restrictions: see the main text

3.2. Simplifications of t-VECH(1,1)

All five models considered in this section can be obtained ftem
VECH(1,1) by imposing certain restrictions on its parameters; the restrictions
are linear and very simple for four specifications, but non-linear in the fifth
case. The prior distributions for the four simpler mod®lsg, M4, Ms, Mg) are
defined as the appropriate conditional distributions from the prior distribution in
M;. Only for the last modelM, the prior distribution is elicited separately,
without any use of conditioning. The five modelsM;) as well as the
decimal logarithms of the Bayes factors in favouMaf logio(By) for j=3,...,7,
are shown in Table 2.
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First we mention th&VECH(1,1) specification with zero restrictions an
and/, i.e. the most richly parameterised model considered by Osiewalski and
Pipien (2003). Since in M; zero values ofx are completely improbabla
posteriori it is not surprising that the Bayes factoMf againstM; is so high.

The next model is the conditionally normal VECH(1,1) specification, N-
VECH(1,1) orMy, obtained fronM; through conditioning ow=+ o (and thus
loosing one free parameter).

Another simplification amounts to settirgg= by=0 j=1,2,3, in (4). This
leads taMs, thet-VECH(1,1) model with constant conditional covariance, equal
to v(v—2)'1a20 for all t. In its k-variate version this model describgswith
2+(1+X)k(k+1)/2 unknown parameters (17 free parameters whel). Of
course, such a specification induces variable conditional correlations (except for
a,0=0) and thus is very different froM,, the model with constant conditional
correlationsM, and especiallys fit the data worse thaM,, but not as poorly
asMa.

The fourth simplification, definindls, assume$;=0, i,j=1,2,3, in (4). This
leads to the t-VechARCH(1) or t-VECH(1,0) specification with
1+[1+k(k+1)/2]k(k+1)/2 (13 for k=2) free parameters describing. The
ARCH(1) structure does not seem enough for our bivariate series, which
requires the dependence of conditional covariance matrix on the more distant
past of the series, which is assured by the GARCH(1,1) structure.

All four simplifications described above have (in thieivariate versions)
too many parameters to be of practical uséct@; the number of parameters in
M, M4 and Mg is O(k“), similarly as inM,, and inMs it is a third order
polynomial ofk. Now we consider a much more sophisticated simplification,
where this number is onl@(k?). This parsimonious modeM-, is a simple
special case of the elegant multivariate GARCH specification proposed by
Baba, Engle, Kraft and Kroner (1989), and thus called BEKK in the literature.
Engle and Kroner (1995) discuss general BEKK formulations and their
equivalence to VechGARCH models. We consider a sinyB&KK(1,1)
specification where the conditional distribution &f(given its past.1) is
Studentt with zero location vector, BEKK-type inverse precision méihxand
unknown degrees of freedon® 2, i.e.

& |Wia ~ (O, Hi V)

H _ B alzg_l_tbn blZE(g £ l.)Ebn blzg_l_@h Clng lECn 0125
' %12 0[] %321 by, i %321 b, %21 C22[] ” %21 Ca2]
)
with Hg = hy I, andhy treated as an additional parameter. Both the degrees of

freedom parameter arfg are a priori independent of the other parameters and
follow the same prior distributions as in the previous models. The other
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parameters are all independent a priori and with the following prior
distributions:
a1 ~ Exp(), axy ~ Exp(), a, ~N(OD,

by, ~ N(0.51) , b, ~N(0J), b,y ~ N(01), by, ~ N(0.51),
c1~N(0.5D, ¢ ~N(@OD, c,; ~N(01), c,, ~ N(0.51),

truncated by the restrictions of positive semi-definiteness of the symmetric
(2x2) matrix A consisting ofa; and stability of the general (2x2) matrx
consisting ofc; (all eigenvalues o€ lie inside the unit circle). There are no
restrictions on the general (2x2) matix consisting ofb;. In the k-variate
version, this model describes using 2+k(k+1)/2+23¢ free parameters (13
parameters fok=2).

Table 2. Simplifications of the t-VECH(1,1) specificationjM

Model Description l0g1o(By)
M3 t-VECH(1,1) witha=1=0jox; (N0 exogenous variable) 81.97
My t-VECH(1,1) withv — +w 7 63
N-VECH(1,1) :

Mg t-VECH |t-VECH(1,1) with the following restrictions in (4):

with constant [hy, Pl P 0 O @ eha H By 0 0 wah 227
I:l .

conditional _
: 0= 0O 0 O 4&,.,FO00 O O _
covariances. é:‘lzvt 0 ;20 grgo 0 (e, ; 2t-1 %0 0 2t
22t P30 O 833 &2t O 33 (ot

Mg t-VECH(1,1) with restrictionsb,j =0,i,j=1,2,3. 4.42
t-VECH(1,0) ]
M, For restrictions in (4) see Osiewalski and Pipien (2001); 252

t-BEKK(1,1) |AssumedvechH, is presented in (5).
Priors specified through conditioning (ifs-Mg) or independently (irM )

SinceMy is much better thaM, — Mg, and about 2-3 orders of magnitude
better tharM,, let us comment on the relation betwddnandM;. In spite of
formal incompatibility of their prior specifications, both models lead to almost
the same posterior distributions of quantities of interest (common parameters or
conditional covariances and correlations) and to the same predictive results.
Osiewalski andPipien (2001) show that the simple BEKK(1,1) error process
can be obtained from Vech-GARCH(1,1) in 64 alternative ways, each time by
imposing 10 non-linear restrictions ajs andb;s in (4). Using a Lindley type
test based on approximate Normality of certain functions of basic parameters in
the t-VECH(1,1) model (with no exogenous variables), they conclude that the
data set analysed here does not give clear support to the simple BEKK
specification for the disturbances, although it is not rejected either. This very
weak conclusion, based on the analysis of the posterior distribution tr the
VECH(1,1) model, is quite different from the reasoning based on the posterior
odds ratio, which favours parsimony and leaves no doubt about the superiority



Bayesian Comparison of Bivariate GARCH Processes in the Presence ..37

of the t-BEKK(1,1) error structure. Our data favour thiBEKK(1,1) model

over all the alternatives considered so far. It appears as flexible as the
VECH(1,1) specification, leading to virtually the same posterior inference on
guantities of interest, but it has much less free parameters. In the next
subsection we show consequences of further simplificatiohd;.oThe main
guestion is whether reducing the number of free parametéis gan increase

the marginal data density value.

3.3. Simplifications of t-BEKK(1,1)

There are two natural reductionsM$. One is the-BEKK(1,0) model,Ms,
which appears as a result of imposing zero restrictions ajsah (5), the other
is the N-BEKK(1,1) specificationyly, obtained by taking the limit=+ c for
the degrees of freedom parameter. The third model, N-BEKK(1,.ar
results from jointly imposing all these restrictions. The prior distributions for all
three simpler modeldMg, Mo, M;o) are defined as the appropriate conditional
distributions from the prior distribution iM-. Table 3 presents the three models
as well as the decimal logarithms of the Bayes factors in favadr,dbgo(B7)
(i=8,9,10), calculated using the N-R method. Not surprisingly, conditional
normality of the error process is strongly rejected by the data, which is in full
accordance with the marginal posterior distribution for the degrees of freedom
parameten in M; (most of the posterior mass is concentrated in the interval
[3; 6.5]). As regards the reduction bf; to Mg (a model with an ARCH(1)
structure, Student conditional distribution, and only kfk+1)/2+ free
parameters fog, i.e. 8 if k=2), t-BEKK(1,0) is about 6 orders of magnitude
worse thant-BEKK(1,1), about 3-4 orders of magnitude worse tihéyy but
slightly better thaMe; see also Table 4.

The overall qualitative conclusion (based on the N-R estimates of the
marginal data density values) is thdt, i.e. thet-BEKK(1,1) specification
(with freea and4), is the best model among all 10 models under consideration.
The Bayes factors in favour ®; are so high that this particular specification
would receive practically all the posterior probability mass under any
reasonable prior model probabilities.

Table 3. Simplifications of the t-BEKK(1,1) specificationM

Model Description logh(B7)
Mg t-BEKK(1,0) t-BEKK(1,1) with Cj =0 ({,j=1,2) in (5) 6.05

My N-BEKK(1,1) |t-BEKK(1,1)v — +oo 36.82
M, N-BEKK(1,0) | N-BEKK(1,1) with ¢; =0 (,j=1,2) in (5) 39.35
Priors obtained through conditioning
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Table 4. Logs of Bayes factors in favour of t-BEKK(1,1).

With exogenous variable No exogenous variable
Model B‘;rrgr?]‘;ers"f Rank | 100;0(B;) g‘:rrgr?]‘;ers"f Rank | 1090(B7)
M, t-BEKK(1,1) 23 1 0 19 1 0
M, , t-VECH(1,1) 33 2 2.52 29 2 4.50
Mg, t-BEKK(1,0) 17 3 6.05 14 3 6.22
Mg , t-VECH(1,0) 23 4 6.94 19 4 10.74
C'V'OSn’StCot\;ZfCH(l’l) 27 6 25.25 23 5 11.53
M, , t-ConstCor(1,1)| 19 7 32.15 15 6 27.84
Mg, N-BEKK(1,1) 22 8 36.82 18 7 44.53
Mo, N-BEKK(1,0) |17 9 39.35 13 8 47.42
M,,N-VECH(1,1) |32 5 10.16 28 9 48.10
t-VECH(1,1) no exo | 29 10 84.49 skl - -

3.4. Stability of model comparisons

In this subsection we discuss stability of Bayes factors and model ranks with
respect to the assumptiari=0, i.e. the lack of the exogenous variable and the
ECM term. Table 4 presents the decimal logarithms of the Bayes factors in
favour of thet-BEKK(1,1) model M), i.e. the values of lqgB). The table
also shows the total number of free parameters of each specification, including
commong, a, 4 andR from (1). While the Bayes factors (obtained in two cases)
can be very different, the resulting model ranks are similar enough — they
indicate the leading position of thBEKK(1,1) specification.

The results in Table 4 were obtained under specific proper prior
distributions over parameter spaces of particular models. These priors are
consistent with our prior knowledge and not too informative. When we make
the priors much more diffuse, the marginal data density values for reasonable
models change by about 2 orders of magnitude, which should be compared to
the huge distance between the best and the worst specifications. However, any
further sensitivity analysis was too costly in terms of computational time and
effort.
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4. Concluding remarks

Introducing the exogenous DEM/USD exchange rate (through our
conditional ECM model) has almost no effect on the results of Bayesian
comparison of competing bivariate GARCH error processes for the pair of
growth rates of PLN/USD and PLN/DEM. Obviously, the presence of
DEM/USD helps enormously in explaining the modelled growth rates and thus
reduces the unexplained volatility. This does not mean, however, that we
suggest using such relevant exogenous variables (and conditional models) in
predictive analyses like option pricing or building dynamic hedging strategies.
Exogenous variables are very useful in explaining volatditypost but are
uncertainex ante Hence it seems reasonable to base predictive analyses on
good models of marginal processes for the forecasted financial instruments. For
our data set and class of models, the simple VAR(1}-BEKK(1,1)
specification considered by Osiewalski and Pipien (2003) seems a reasonable
approximation of the marginal bivariate process generating PLN/USD and
PLN/DEM.
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